Zeitschriftenartikel zum Thema „Organoplatinum compounds“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Organoplatinum compounds.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-40 Zeitschriftenartikel für die Forschung zum Thema "Organoplatinum compounds" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Massa, W., G. Baum, B. S. Seo und J. Lorberth. „Organoplatinum compounds“. Journal of Organometallic Chemistry 352, Nr. 3 (September 1988): 415–20. http://dx.doi.org/10.1016/0022-328x(88)83130-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Donath, H., E. V. Avtomonov, I. Sarraje, K. H. von Dahlen, M. El-Essawi, J. Lorberth und B. S. Seo. „Organoplatinum compounds VII“. Journal of Organometallic Chemistry 559, Nr. 1-2 (Mai 1998): 191–96. http://dx.doi.org/10.1016/s0022-328x(98)00481-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Benn, Reinhard, Rolf-Dieter Reinhardt und Anna Rufińska. „195Pt NMR of organoplatinum compounds“. Journal of Organometallic Chemistry 282, Nr. 2 (März 1985): 291–95. http://dx.doi.org/10.1016/0022-328x(85)87180-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mahato, Dibyendu, Rahla Naghma, Mohammad Jane Alam, Shabbir Ahmad und Bobby Antony. „Electron impact ionisation cross section for organoplatinum compounds“. Molecular Physics 114, Nr. 21 (24.08.2016): 3104–11. http://dx.doi.org/10.1080/00268976.2016.1219408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Deolka, Shubham, Orestes Rivada-Wheelaghan, Sandra L. Aristizábal, Robert R. Fayzullin, Shrinwantu Pal, Kyoko Nozaki, Eugene Khaskin und Julia R. Khusnutdinova. „Metal–metal cooperative bond activation by heterobimetallic alkyl, aryl, and acetylide PtII/CuI complexes“. Chemical Science 11, Nr. 21 (2020): 5494–502. http://dx.doi.org/10.1039/d0sc00646g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The selective formation of heterobimetallic PtII/CuI complexes demonstrates how facile bond activation processes can be achieved by altering the reactivity of common organoplatinum compounds through their interaction with another metal center.
6

Nagashima, Hideo, Yoshiyuki Kato, Hirofumi Yamaguchi, Eiji Kimura, Teruhiko Kawanishi, Masanao Kato, Yahachi Saito, Masaaki Haga und Kenji Itoh. „Synthesis and Reactions of Organoplatinum Compounds of C60, C60Ptn“. Chemistry Letters 23, Nr. 7 (Juli 1994): 1207–10. http://dx.doi.org/10.1246/cl.1994.1207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Melník, Milan, Peter Mikuš und Clive Eduard Holloway. „Platinum organometallic compounds: classification and analysis of crystallographic and structural data of monomeric five and higher coordinated“. Reviews in Inorganic Chemistry 33, Nr. 1 (01.05.2013): 13–103. http://dx.doi.org/10.1515/revic-2013-0001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractFour hundred and twenty monomeric organoplatinum compounds, in which platinum atoms are five- and higher coordinated, are analyzed. The platinum atoms are found in the oxidation states +2, +3 and +4. The Pt(II) compounds by far prevail. There are wide varieties of the inner coordination spheres about the platinum centers. The Pt(II) compounds are five-coordinated (trigonal bipyramidal and square pyramidal), six-coordinated (different degrees of distortion), seven-coordinated (pentagonal bipyramidal, piano stool) and sandwiched (PtC10). The Pt(III) compound is square-planar. The Pt(IV) compounds are six- and eight-coordinated. There are several relationships between the Pt-L bond distances, covalent radii of the coordinated atom/ligand, and metallocycles, which are discussed. The trans-effect plays an important role in the inner coordination spheres about the Pt centers, especially on the Pt-L bond distances.
8

Melnik, Milan, Ondrej Sprusansky, Clive Eduard Holloway und Peter Mikus. „Platinum organometallic compounds: classification and analysis of crystallographic and structural data. Monomeric Pt compounds with PtC2AB, PtA2BC and PtABCD compositions“. Reviews in Inorganic Chemistry 32, Nr. 2-4 (01.12.2012): 111–80. http://dx.doi.org/10.1515/revic-2012-0008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractThis review covers almost 350 four-coordinated monomeric organoplatinum complexes with PtC2AB, PtA2BC and PtABCD compositions, and there is wide variability of chromophores. The most common ligands in addition to the C donor are PPh3 and chlorine. Platinum(II) is found only in a square-planar environment involving cis- as well as trans-configurations with a different degree of distortion, especially when bi- or terdentate ligands are present. The trans-effect decreases in the order of the atoms in which the effect dominates, H>C>P>Si>S. There are at least two types of isomerism, cis-trans and distortion. The data strongly suggest that distortion isomerism is, for platinum chemistry, more common than cis- and trans-isomerism.
9

Kolonial Prodjosantoso, Anti. „Preparation and Characterization of Chloride-Free Alumina-Supported Platinum Catalysts“. Oriental Journal of Chemistry 34, Nr. 4 (31.07.2018): 2068–73. http://dx.doi.org/10.13005/ojc/3404046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Supported precious metal catalysts are extensively used as efficient catalysts. This kind of catalysts, particularly chloride-free catalysts, sintesized using organoplatinum compounds as precursors has attracted immense research interest compared to their parent metals due to their unique physico-chemical properties. The main objective of this research is to prepare and characterize the chloride-free alumina-supported platinum catalysts. An organometallic compound of ammonium bisoxalatoplatinate(II) hydrate was used to prepare unsupported and alumina supported platinum catalysts. A series method including IR, XRD, SEM, TEM, EDA, and XPS was used to characterize samples. The research shows that ammonium bisoxalatoplatinate(II) hydrate could be synthesized and used to prepare unsupported and alumina supported platinum free of chloride impurities.
10

Noguchi, Kishie, Takashi Tamura, Hidetaka Yuge und Takeshi Ken Miyamoto. „Linkage isomerism of organoplatinum(II) compounds coordinated by two 1,3-dimethylbarbiturate anions“. Acta Crystallographica Section C Crystal Structure Communications 56, Nr. 2 (15.02.2000): 171–73. http://dx.doi.org/10.1107/s0108270199014109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Hubbert, Christoph, Marcus Breunig, Kristen J. Carroll, Frank Rominger und A. Stephen K. Hashmi. „Simple Synthesis of New Mixed Isocyanide-NHC-Platinum(II) Complexes and Their Catalytic Activity“. Australian Journal of Chemistry 67, Nr. 3 (2014): 469. http://dx.doi.org/10.1071/ch13546.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Using the new modular and convergent approach to isocyanide-N-hetrocyclic carbene-platinum(ii) complexes, eight new compounds have been synthesised. For three of these, detailed structural data could be obtained by X-ray crystal structure analyses. This new family of organoplatinum complexes is catalytically active for hydrosilylation reactions; styrene and phenylacetylene could be used as substrates; triethylsilane and 1,1,1,3,5,5,5-heptamethyltrisiloxane could be used as reagents. With some of the new platinum pre-catalysts, excellent regioselectivities of up to 98 : 2 could be obtained, and turnover numbers up to 840 were achieved.
12

Raven, William, Thomas Joschko, Irmgard Kalf und Ulli Englert. „Hydrogenversusfluorine: effects on molecular structure and intermolecular interactions in a platinum isocyanate complex“. Acta Crystallographica Section C Structural Chemistry 72, Nr. 3 (13.02.2016): 184–88. http://dx.doi.org/10.1107/s2053229616002382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
At the molecular level, the enantiomerically pure square-planar organoplatinum complex (SP-4-4)-(R)-[2-(1-aminoethyl)-5-fluorophenyl-κ2C1,N][(R)-1-(4-fluorophenyl)ethylamine-κN](isocyanato-κN)platinum(II), [Pt(C8H9FN)(NCO)(C8H10FN)], and its congener without fluorine substituents on the aryl rings adopt the same structure within error. The similarities between the compounds extend to the most relevant intermolecular interactions,i.e.N—H...O and N—H...N hydrogen bonds link neighbouring molecules into chains along the shortest lattice parameter in each structure. Differences between the crystal structures of the fluoro-substituted and parent complex become obvious with respect to secondary interactions perpendicular to the classical hydrogen bonds; the fluorinated compound features short C—H...F contacts with an F...H distance ofca2.6 Å. The fluorine substitution is also reflected in reduced backbonding from the metal cation to the isocyanate ligand.
13

Singh, Khushwant, Ankit Gangrade, Achintya Jana, Biman B. Mandal und Neeladri Das. „Design, Synthesis, Characterization, and Antiproliferative Activity of Organoplatinum Compounds Bearing a 1,2,3-Triazole Ring“. ACS Omega 4, Nr. 1 (10.01.2019): 835–41. http://dx.doi.org/10.1021/acsomega.8b02849.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Klein, Axel, Steffen Hasenzahl und Wolfgang Kaim. „EPR study of electron transfer and group transfer in organoplatinum(II) and (IV) compounds †“. Journal of the Chemical Society, Perkin Transactions 2, Nr. 12 (1997): 2573–78. http://dx.doi.org/10.1039/a702466e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Moustafa, Mohamed E., Paul D. Boyle und Richard J. Puddephatt. „Photoswitchable organoplatinum complexes containing an azobenzene derivative of 3,6-di(2-pyridyl)pyridazine“. Canadian Journal of Chemistry 92, Nr. 8 (August 2014): 706–15. http://dx.doi.org/10.1139/cjc-2013-0588.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The new, unsymmetrical azobenzene-tagged ligand 4-(4-azobenzene)-3,6-di(2-pyridyl)pyridazine, adpp, forms complexes with platinum(II) and platinum(IV), which exist as a mixture of geometrical isomers. The complexes are characterized primarily by their NMR spectra, while the structures of the ligand and its complexes [PtMe2(adpp)], [PtBrMe2(CH2C6H4-4-t-Bu)(adpp)], and [PtBrMe2(CH2C6H3-3,5-t-Bu2)(adpp)] have been structurally characterized. In solution, the compounds undergo easy photochemical trans−cis switching of the azobenzene group, with subsequent slow thermal isomerization back to the more stable trans-azobenzene isomer.
16

Moriuchi, Toshiyuki, Yuki Sakamoto, Shunichi Noguchi, Takashi Fujiwara, Shigehisa Akine, Tatsuya Nabeshima und Toshikazu Hirao. „Design and controlled emission properties of bioorganometallic compounds composed of uracils and organoplatinum(ii) moieties“. Dalton Transactions 41, Nr. 28 (2012): 8524. http://dx.doi.org/10.1039/c2dt30533j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Howell, B. A., E. W. Walles und R. Rashidianfar. „Noncovalent complexes of water-soluble polymers and organoplatinum compounds as potential time-release antitumor agents“. Makromolekulare Chemie. Macromolecular Symposia 19, Nr. 1 (Juni 1988): 329–39. http://dx.doi.org/10.1002/masy.19880190126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Anderson, Craig M., Margarita Crespo, Michael C. Jennings, Alan J. Lough, George Ferguson und Richard J. Puddephatt. „Competition between intramolecular oxidative addition and ortho metalation in organoplatinum(II) compounds: activation of aryl-halogen bonds“. Organometallics 10, Nr. 8 (August 1991): 2672–79. http://dx.doi.org/10.1021/om00054a031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Saha, Manik Lal, Xuzhou Yan und Peter J. Stang. „Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications“. Accounts of Chemical Research 49, Nr. 11 (13.10.2016): 2527–39. http://dx.doi.org/10.1021/acs.accounts.6b00416.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yamago, Shigeru, Eiichi Kayahara und Takahiro Iwamoto. „Organoplatinum-Mediated Synthesis of Cyclic π-Conjugated Molecules: Towards a New Era of Three-Dimensional Aromatic Compounds“. Chemical Record 14, Nr. 1 (Februar 2014): 84–100. http://dx.doi.org/10.1002/tcr.201300035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Yamago, Shigeru, Eiichi Kayahara und Takahiro Iwamoto. „ChemInform Abstract: Organoplatinum-Mediated Synthesis of Cyclic π-Conjugated Molecules: Towards a New Era of Three-Dimensional Aromatic Compounds“. ChemInform 45, Nr. 20 (28.04.2014): no. http://dx.doi.org/10.1002/chin.201420267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Janzen, Michael C., Michael C. Jennings und Richard J. Puddephatt. „Self-assembly using stannylplatinum(IV) halide complexes as ligands for organotin halides“. Canadian Journal of Chemistry 80, Nr. 11 (01.11.2002): 1451–57. http://dx.doi.org/10.1139/v02-093.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The possibility of forming extended structures by self-association using transition metal halides as donors to organotin acceptors has been investigated. The stannylplatinum(IV) complex [PtClMe2(SnMe2Cl)(bu2bpy)] forms a 1:1 adduct [PtClMe2(SnMe2Cl)(bu2bpy)]·Me2SnCl2 with Me2SnCl2 in which the organoplatinum complex acts as a donor to the organotin halide. Similarly, [PtClMe2(SnMeCl2)(bu2bpy)] forms adducts [PtClMe2(SnMeCl2)(bu2bpy)]·MeSnCl3 or [PtClMe2(SnMeCl2)(bu2bpy)]·Me2SnCl2, and [{PtClMe2(bu2bpy)}2(µ-SnCl2)] forms [{PtClMe2(bu2bpy)}2(µ-SnCl2)]·Me2SnCl2. Structure determinations on selected compounds show that the donor is the Pt-Cl group and the acceptor tin centre is 5-coordinate. In the similar bromo complex [PtBrMe2(SnMeBr2)(bu2bpy)]·Me2SnBr2 both the Pt-Br and PtSn-Br groups coordinate to the Me2SnBr2 acceptor with short (3.14 or 3.29 Å) and long (3.99 or 4.05 Å) contacts, respectively, so that the acceptor tin centre adopts distorted octahedral stereochemistry in the solid state and a folded polymeric structure is formed. Reaction of [{PtClMe2(bu2bpy)}2(µ-SnCl2)] with AgO3SCF3 yields the complex [{PtClMe2(bu2bpy)}(µ-SnCl2){PtMe2(bu2bpy)O3SCF3}], which is fluxional in solution.Key words: platinum, tin, self-assembly, coordination chemistry, organometallics.
23

Ebert, K. H., W. Massa, H. Donath, J. Lorberth, B. S. Seo und E. Herdtweck. „Organoplatinum compounds: VI. Trimethylplatinum thiomethylate and trimethylplatinum iodide. The crystal structures of [(CH3)3PtS(CH3)]4 and [(CH3)3PtI]4·0.5CH3I“. Journal of Organometallic Chemistry 559, Nr. 1-2 (Mai 1998): 203–7. http://dx.doi.org/10.1016/s0022-328x(98)00414-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Klein, Axel, Steffen Hasenzahl, Wolfgang Kaim und Jan Fiedler. „On the Question of Mixed-Valent States in Ligand-Bridged Dinuclear Organoplatinum Compounds [RkPt(μ-L)PtRk]n,k= 2 or 4†“. Organometallics 17, Nr. 16 (August 1998): 3532–38. http://dx.doi.org/10.1021/om980107j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Bryndza, Henry E., Peter J. Domaille, Wilson Tam, Lawrence K. Fong, Rocco A. Paciello und John E. Bercaw. „Comparison of metal-hydrogen, -oxygen, -nitrogen and -carbon bond strengths and evaluation of functional group additivity principles for organoruthenium and organoplatinum compounds“. Polyhedron 7, Nr. 16-17 (Januar 1988): 1441–52. http://dx.doi.org/10.1016/s0277-5387(00)81773-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Huang, Mei-Han, Yan-Ming Huang und Sheng-Nan Wu. „The Inhibition by Oxaliplatin, a Platinum-Based Anti-Neoplastic Agent, of the Activity of Intermediate-Conductance Ca2+-Activated K+ Channels in Human Glioma Cells“. Cellular Physiology and Biochemistry 37, Nr. 4 (2015): 1390–406. http://dx.doi.org/10.1159/000430404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Oxaliplatin (OXAL) is a third-generation organoplatinum which is effective against advanced cancer cells including glioma cells. How this agent and other related compounds interacts with ion channels in glioma cells is poorly understood. OXAL (100 µM) suppressed the amplitude of whole-cell K+ currents (IK); and, either DCEBIO or ionomycin significantly reversed OXAL-mediated inhibition of IK in human 13-06-MG glioma cells. In OXAL-treated cells, TRAM-34 did not suppress IK amplitude in these cells. The intermediate-conductance Ca2+-activated K+ (IKCa) channels subject to activation by DCEBIO and to inhibition by TRAM-34 or clotrimazole were functionally expressed in these cells. Unlike cisplatin, OXAL decreased the probability of IKCa-channel openings in a concentration-dependent manner with an IC50 value of 67 µM. No significant change in single-channel conductance of IKCa channels in the presence of OXAL was demonstrated. Neither large-conductance Ca2+-activated K+ channels nor inwardly rectifying K+ currents in these cells were affected in the presence of OXAL. OXAL also suppressed the proliferation and migration of 13-06-MG cells in a concentration- and time-dependent manner. OXAL reduced IKCa-channel activity in LoVo colorectal cancer cells. Taken together, the inhibition by OXAL of IKCa channels would conceivably be an important mechanism through which it acts on the functional activities of glioma cells occurring in vivo.
27

Bryndza, Henry E., Lawrence K. Fong, Rocco A. Paciello, Wilson Tam und John E. Bercaw. „Relative metal-hydrogen, -oxygen, -nitrogen, and -carbon bond strengths for organoruthenium and organoplatinum compounds; equilibrium studies of Cp*(PMe3)2RuX and (DPPE)MePtX systems“. Journal of the American Chemical Society 109, Nr. 5 (März 1987): 1444–56. http://dx.doi.org/10.1021/ja00239a026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Wouters, Jacqueline M. A., Rene A. Klein, Cornelis J. Elsevier, Martin C. Zoutberg und Casper H. Stam. „Insertion of isocyanide into (.sigma.-allenyl)platinum(II) and -palladium(II) compounds. Synthesis and mechanism of formation of new organoplatinum compounds containing a .sigma.-bonded vinylketenimine ligand. X-ray crystal structure of [PtBr{C(CMe2)(CH:C:NBu-tert)}(PPh3)2]“. Organometallics 12, Nr. 10 (Oktober 1993): 3864–72. http://dx.doi.org/10.1021/om00034a019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Whitesides, George M., Marifaith Hackett, Robert L. Brainard, Jean Paul P. M. Lavalleye, Alan F. Sowinski, Alan N. Izumi, Stephen S. Moore, Duncan W. Brown und Erin M. Staudt. „Suppression of unwanted heterogeneous platinum(0)-catalyzed reactions by poisoning with mercury(0) in systems involving competing homogeneous reactions of soluble organoplatinum compounds: thermal decomposition of bis(triethylphosphine)-3,3,4,4-tetramethylplatinacyclopentane“. Organometallics 4, Nr. 10 (Oktober 1985): 1819–30. http://dx.doi.org/10.1021/om00129a023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Van Beek, Johannus A. M., Gerard Van Koten, Wilberth J. J. Smeets und Anthony L. Spek. „Model for the initial stage in the oxidative addition of I2 to organoplatinum(II) compounds. X-ray structure of square-pyramidal [PtIII{C6H3(CH2NMe2)2-o,o'}(.eta.1-I2)] containing a linear Pt-I-I arrangement“. Journal of the American Chemical Society 108, Nr. 16 (August 1986): 5010–11. http://dx.doi.org/10.1021/ja00276a053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Saare, Andrea, und Lutz Dahlenburg. „Oligophosphan-Liganden, XXXIV** Organoplatin(II)-Komplexe mit (+)-(l S)-1,2-Bis(diphenylphosphino)- 1 -phenylethan-Koordination / Oligophosphine Ligands, XXXIV** Organoplatinum(II) Complexes with (+)-(1S)-1,2-Bis(diphenylphosphino)- 1-phenylethane Coordination“. Zeitschrift für Naturforschung B 47, Nr. 2 (01.02.1992): 247–52. http://dx.doi.org/10.1515/znb-1992-0216.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Reaction of (C8H12)Pt(CH2CMe3)2 with ( + )-(1 S)-Ph2PCH(Ph)CH2PPh2, S-PHEPHOS, gave (S-PHEPHOS)Pt(CH2CMe3)2 (1). Cleavage of one of the Pt-C bonds of this compound with methanolic HCl yielded (S-PHEPHOS)PtCl(CH2CMe3) (2) which could be converted to (S-PHEPHOS)PtH(CH2CMe3) (3) by treatment with Na[HB(OMe)3], The complexes so obtained were characterized by NMR spectroscopy (preferentially 31P) as well as by an X-ray structure analysis performed on the dineopentyl derivative 1. While thermal generation of (S-PHEPHOS)Pt(0) from 3 in the presence of HC ≡ CC(O)OCMe3 produced the alkyne coordination compound (S-PHEPHOS)Pt(HC ≡ CC(O)OCMe3) (4) efficiently, thermolysis of 3 in the presence of PhC ≡ CH resulted in smooth trapping of the 14e intermediate to form the product of oxidative C - H addition, (S-PHEPHOS)PtH(C≡CPh) (5). In contrast, only indiscriminate reactions were observed to occur on thermal generation of (S-PHEPHOS)Pt(O) from neopentyl hydride 3 in C6H6 at 70 °C.
32

Markman, M., T. Hakes, B. Reichman, J. L. Lewis, S. Rubin, W. Jones, L. Almadrones, F. Pizzuto und W. Hoskins. „Ifosfamide and mesna in previously treated advanced epithelial ovarian cancer: activity in platinum-resistant disease.“ Journal of Clinical Oncology 10, Nr. 2 (Februar 1992): 243–48. http://dx.doi.org/10.1200/jco.1992.10.2.243.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
PURPOSE There is a critical need to find new antineoplastic drugs that are active in platinum-refractory ovarian cancer. We conducted a phase II trial of single-agent ifosfamide with mesna uroprotection in patients with ovarian cancer previously treated with an organoplatinum compound to assess its activity in this clinical setting. PATIENTS AND METHODS Ifosfamide (1.0 or 1.2 g/m2/d for 5 days, delivered on a monthly schedule) was administered to the 57 patients entered onto this trial. Dose reductions were permitted for unacceptable toxicities. RESULTS Toxicity included severe bone marrow suppression (WBC count less than 1,000/microL and/or platelet count less than 50,000/microL), renal dysfunction (serum creatinine level greater than 2.0 mg/dL), and reversible CNS dysfunction (disorientation, hallucinations, somnolence, and agitation), which occurred in 20%, 14%, and 12% of patients, respectively. Of 41 patients with strictly defined platinum-refractory ovarian cancer, five (12%) demonstrated a partial (four) or complete (one) response to this treatment program. CONCLUSION Single-agent ifosfamide has modest but unequivocal activity in platinum-resistant ovarian cancer. Further studies of this drug used as a front-line agent along with an organoplatinum compound or as part of a dose-intensification program with bone marrow, peripheral stem cell, or colony-stimulating factor support are indicated. In addition, single-agent ifosfamide is a reasonable standard second-line treatment strategy in appropriately selected patients with platinum-refractory ovarian cancer.
33

Chen, Li‐Jun, Xin Wu, Alexander M. Gilchrist und Philip A. Gale. „Organoplatinum Compounds as Anion‐Tuneable Uphill Hydroxide Transporters“. Angewandte Chemie, 11.03.2022. http://dx.doi.org/10.1002/ange.202116355.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Chen, Li‐Jun, Xin Wu, Alexander M. Gilchrist und Philip A. Gale. „Organoplatinum Compounds as Anion‐Tuneable Uphill Hydroxide Transporters“. Angewandte Chemie International Edition, 11.03.2022. http://dx.doi.org/10.1002/anie.202116355.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bhavsar, Rakesh, Yogesh Thakar, Minaxi Vinodkumar und Chetan Limbachiya. „Electron impact ionisation and other molecular processes for organoplatinum compounds“. Molecular Physics, 29.04.2022. http://dx.doi.org/10.1080/00268976.2022.2070086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

VAN BEEK, J. A. M., G. VAN KOTEN, W. J. J. SMEETS und A. L. SPEK. „ChemInform Abstract: Model for the Initial Stage in the Oxidative Addition of I2 to Organoplatinum (II) Compounds.“ Chemischer Informationsdienst 17, Nr. 50 (16.12.1986). http://dx.doi.org/10.1002/chin.198650305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

BRYNDZA, H. E., P. J. DOMAILLE, W. TAM, L. K. FONG, R. A. PACIELLO und J. E. BERCAW. „ChemInform Abstract: Comparison of Metal-Hydrogen, -Oxygen, -Nitrogen and -Carbon Bond Strengths and Evaluation of Functional Group Additivity Principles for Organoruthenium and Organoplatinum Compounds.“ ChemInform 20, Nr. 4 (24.01.1989). http://dx.doi.org/10.1002/chin.198904098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

BRYNDZA, H. E., L. K. FONG, R. A. PACIELLO, W. TAM und J. E. BERCAW. „ChemInform Abstract: Relative Metal-Hydrogen, -Oxygen, -Nitrogen, and -Carbon Bond Strengths for Organoruthenium and Organoplatinum Compounds; Equilibrium Studies of Cp*(PMe3)2RuX and (DPPE)MePtX Systems“. ChemInform 18, Nr. 28 (14.07.1987). http://dx.doi.org/10.1002/chin.198728091.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Thomson, J., A. H. Fzea, J. Lobban, P. McGivern, J. A. Cairns, A. G. Fitzgerald, G. J. Berry, M. R. Davidson und Y. C. Fan. „A Novel Range of Noble Metal Organometallic Fluorides for use in the Fabrication of Submicron Metal Features by E-Beam or UV Irradiation“. MRS Proceedings 546 (1998). http://dx.doi.org/10.1557/proc-546-225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
SummaryThe preparation a nd characterisationo f a novel organoplatinum fluoride is described. The physical vapour deposition (PVD) of the material was performed in the temperature range 160–170°C, and electron beam bombardment or uv irradiation, results in the degradation of the compound to give high quality metal features down to dimensions of ca 60 nm.
40

Mbonu, I. J., Y. Sun, P. J. Stang und Y. Sun. „COORDINATION-DRIVEN SELF-ASSEMBLY DISCRETE ORGANOPLATINUM(II) SUPRAMOLECULAR METALLACYCLE“. Journal of Chemical Society of Nigeria 46, Nr. 4 (16.09.2021). http://dx.doi.org/10.46602/jcsn.v46i4.658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The aim of this investigation is, to utilize coordination-driven self-assembly reactions of 4, 4′-dibromobenzophenone with tetrakis(triethyl phosphine) platinum to construct platinum-containing supramolecular metallacycle, 4, 4′-bis[trans-Pt(PEt3)2Br]benzophenone with exploitable properties for application in catalysis, energy storage, and biomedicine. The process was monitored by 1H NMR and C NMR. A 4, 4’-dibromobenzophenone and tetrakis(triethyl phosphine) platinum in the ratio 1:2 in toluene were utilized in the synthesis. In the structure, platinum ions are coordinated through the bridging ligand molecules forming polymeric chains with a four atomic environment. The coordination environment was that of a square planar geometry with two phosphorus atoms of triethyl phosphine in apical positions. The optimized geometry evaluated by DFT B3LYP-6-311G, Gaussian09W, and Avogadro models support the crystal structure of this molecule. The compound offers high reversible binding properties that can be used for designing smart surfaces for applications in catalysis, energy storage, and biomedicine. The results from the experimental investigation and computer-aided design provide insight into the best strategies, by design, and binding mode. Future works are recommended for developing this discrete supramolecular metallacycle into supramolecular metallacages for its application in the drug delivery system.

Zur Bibliographie