Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Organic light-emitting materials.

Zeitschriftenartikel zum Thema „Organic light-emitting materials“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Organic light-emitting materials" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Mukherjee, Sanjoy, und Pakkirisamy Thilagar. „Organic white-light emitting materials“. Dyes and Pigments 110 (November 2014): 2–27. http://dx.doi.org/10.1016/j.dyepig.2014.05.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chi, Yun, und Pi-Tai Chou. „Light Emitting Materials for Organic Electronics“. Journal of Photopolymer Science and Technology 21, Nr. 3 (2008): 357–62. http://dx.doi.org/10.2494/photopolymer.21.357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Santato, Clara. „(Invited) Biodegradable Light-Emitting Organic Materials“. ECS Meeting Abstracts MA2020-01, Nr. 16 (01.05.2020): 1098. http://dx.doi.org/10.1149/ma2020-01161098mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kwon, Soon-Ki, Yun-Hi Kim, Soo-Young Park und Byeong-Kwan An. „Novel Blue Organic Light Emitting Materials“. Molecular Crystals and Liquid Crystals 377, Nr. 1 (Januar 2002): 19–23. http://dx.doi.org/10.1080/713738554.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Underwood, Gary M. „Materials for Organic Light Emitting Diodes“. NIP & Digital Fabrication Conference 16, Nr. 1 (01.01.2000): 344. http://dx.doi.org/10.2352/issn.2169-4451.2000.16.1.art00090_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

TAN, Wenle, Yue YU, Dehua HU und Yuguang MA. „Recent Progress of Blue-light Emitting Materials for Organic Light-emitting Diodes“. Chinese Journal of Luminescence 44, Nr. 1 (2023): 1–11. http://dx.doi.org/10.37188/cjl.20220328.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Meiso YOKOYAMA, Meiso YOKOYAMA, LI Chi-Shing LI Chi-Shing und SU Shui-hsiang SU Shui-hsiang. „Novel Field Emission Organic Light Emitting Diodes with Dynode“. Chinese Journal of Luminescence 32, Nr. 1 (2011): 1–6. http://dx.doi.org/10.3788/fgxb20113201.0001b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kalinowski, J. „Optical materials for organic light-emitting devices“. Optical Materials 30, Nr. 5 (Januar 2008): 792–99. http://dx.doi.org/10.1016/j.optmat.2007.02.041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chaoping Chen, Chaoping Chen, Hongjing Li Hongjing Li, Yong Zhang Yong Zhang, Changbum Moon Changbum Moon, Woo Young Kim Woo Young Kim und Chul Gyu Jhun Chul Gyu Jhun. „Thin-film encapsulation for top-emitting organic light-emitting diode with inverted structure“. Chinese Optics Letters 12, Nr. 2 (2014): 022301–22303. http://dx.doi.org/10.3788/col201412.022301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kudo, Kazuhiro. „Organic light emitting transistors“. Current Applied Physics 5, Nr. 4 (Mai 2005): 337–40. http://dx.doi.org/10.1016/j.cap.2003.11.095.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Tao, Youtian, Chuluo Yang und Jingui Qin. „Organic host materials for phosphorescent organic light-emitting diodes“. Chemical Society Reviews 40, Nr. 5 (2011): 2943. http://dx.doi.org/10.1039/c0cs00160k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zhang, Congcong, Penglei Chen und Wenping Hu. „Organic Light-Emitting Transistors: Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations (Small 10/2016)“. Small 12, Nr. 10 (März 2016): 1392. http://dx.doi.org/10.1002/smll.201670053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Fung, Man-Keung, Yan-Qing Li und Liang-Sheng Liao. „Tandem Organic Light-Emitting Diodes“. Advanced Materials 28, Nr. 47 (13.10.2016): 10381–408. http://dx.doi.org/10.1002/adma.201601737.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

POLOȘAN, Silviu. „ORGANIC LIGHT EMITTING DIODES (OLED)“. Annals of the Academy of Romanian Scientists Series on Physics and Chemistry 8, Nr. 1 (2023): 46–57. http://dx.doi.org/10.56082/annalsarsciphyschem.2023.1.46.

Der volle Inhalt der Quelle
Annotation:
"Organic Light Emitting Diodes (OLED) now reach the third phase concerning efficiency. The first devices are based on pure organic materials, and the second and third generations are based on combinations between metals and organic ligands in so- called organometallics for which their emission external quantum efficiency is increased. The second generation is now widely used in large displays reaching high efficiency because of the spin-orbit coupling between metal and their ligands, which induces intersystem crossing processes. The third generation of OLED comprises an increased external quantum efficiency obtained by adequately choosing the ligands, reaching a theoretical value of 100%. These OLEDs will be briefly described with their advantages and the technologies necessary for next-generation displays."
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Geffroy, Bernard. „Organic Light Emitting Devices“. Macromolecular Chemistry and Physics 207, Nr. 14 (24.07.2006): 1306. http://dx.doi.org/10.1002/macp.200600239.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Geffroy, B., und L. Rocha. „Organic Light Emitting Diodes: materials, device structures and light extraction“. International Journal of Materials and Product Technology 34, Nr. 4 (2009): 454. http://dx.doi.org/10.1504/ijmpt.2009.025000.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Zheng, Yingqi, und Xiaozhang Zhu. „Recent Progress in Emerging Near-Infrared Emitting Materials for Light-Emitting Diode Applications“. Organic Materials 02, Nr. 04 (Oktober 2020): 253–81. http://dx.doi.org/10.1055/s-0040-1716488.

Der volle Inhalt der Quelle
Annotation:
In view of the wide applications of near-infrared (NIR) light in night vision, security, medicine, sensors, telecommunications, and military applications, and the scarcity of high-efficiency NIR-emitting materials, development of alternative NIR-emitting materials is urgently required. In this review, we focus on three kinds of emerging NIR-emitting materials used in light-emitting diodes (LEDs), namely organic materials, inorganic quantum dot (QD) materials, and organic–inorganic hybrid perovskite materials; the corresponding devices are organic LEDs, QD LEDs, and perovskite LEDs. The advantages and disadvantages of the three kinds of materials are discussed, some representative works are reviewed, and a brief outlook for these materials is provided.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Yao, Bohong. „Applications of phosphorescent organic light emitting diodes“. Highlights in Science, Engineering and Technology 26 (30.12.2022): 52–58. http://dx.doi.org/10.54097/hset.v26i.3642.

Der volle Inhalt der Quelle
Annotation:
Organic light-emitting diodes (OLED) materials have been widely applied in many fields, among which phosphorescent OLED materials have more and more attention due to their luminescence efficiency and performance. At present, the luminescence layer of many OLED devices adopts phosphorescent materials as the main body to achieve a better visual experience for users. The research and development of blue electrophosphorescent materials are not mature enough. The two big aspects including color purity and the service life are major problems, and many researchers are now working on research methods of conquering the blue phosphorescent OLED materials shortage. In this article, fluorescent and phosphorescent OLED materials have been mentioned. The applications and branches of phosphorescent OLED materials are described. The article also analyzes the shortcomings of phosphorescent OLED and explained the reasons, mainly thermal activation delay fluorescence (TADF). Its purpose is to reduce the expensiveness of phosphorescent OLED materials. Meanwhile, the luminescence efficiency of fluorescent materials can be greatly improved. Additionally, the basic principles of luminescent OLED materials and the applications of phosphorescent OLED materials are also illustrated, including the prospect of blue phosphorescent OLED materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Suzuki, Masayoshi, Hiromoto Sato, Atsushi Sawada und Shohei Naemura. „Organic Light Emitting Materials based on Liquid Crystals“. Journal of Photopolymer Science and Technology 16, Nr. 2 (2003): 323–28. http://dx.doi.org/10.2494/photopolymer.16.323.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yourre, T. A., L. I. Rudaya, N. V. Klimova und V. V. Shamanin. „Organic materials for photovoltaic and light-emitting devices“. Semiconductors 37, Nr. 7 (Juli 2003): 807–15. http://dx.doi.org/10.1134/1.1592855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kulkarni, Abhishek P., Christopher J. Tonzola, Amit Babel und Samson A. Jenekhe. „Electron Transport Materials for Organic Light-Emitting Diodes“. Chemistry of Materials 16, Nr. 23 (November 2004): 4556–73. http://dx.doi.org/10.1021/cm049473l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Farinola, Gianluca M., und Roberta Ragni. „Electroluminescent materials for white organic light emitting diodes“. Chemical Society Reviews 40, Nr. 7 (2011): 3467. http://dx.doi.org/10.1039/c0cs00204f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

So, Franky. „Guest Editorial: Organic Light-Emitting Materials and Devices“. Journal of Photonics for Energy 1, Nr. 1 (01.01.2011): 011099. http://dx.doi.org/10.1117/1.3574019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lee, Jeong-Ik, Hyoyoung Lee, Jiyoung Oh, Hye Yong Chu, Seong Hyun Kim, Yong Suk Yang, Gi Heon Kim, Lee-Mi Do und Taehyoung Zyung. „Organic blue light emitting materials based on spirobifluorene“. Current Applied Physics 3, Nr. 6 (Dezember 2003): 469–71. http://dx.doi.org/10.1016/s1567-1739(03)00100-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Lee, Ju Won, Young Kwan Kim, Byoung Chung Sohn, Jin-Soon Kim, Sung Min Kim und Yunkyoung Ha. „White-Light-Emitting Materials for Organic Electroluminescent Devices“. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 371, Nr. 1 (Oktober 2001): 235–38. http://dx.doi.org/10.1080/10587250108024730.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Yook, Kyoung Soo, und Jun Yeob Lee. „Bipolar Host Materials for Organic Light-Emitting Diodes“. Chemical Record 16, Nr. 1 (23.11.2015): 159–72. http://dx.doi.org/10.1002/tcr.201500221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Islam, Amjad, Syed Hamad Ullah Shah, Zeeshan Haider, Muhammad Imran, Al Amin, Syed Kamran Haider und Ming-De Li. „Biological Interfacial Materials for Organic Light-Emitting Diodes“. Micromachines 14, Nr. 6 (31.05.2023): 1171. http://dx.doi.org/10.3390/mi14061171.

Der volle Inhalt der Quelle
Annotation:
Organic optoelectronic devices have received appreciable attention due to their low cost, mechanical flexibility, band-gap engineering, lightness, and solution processability over a broad area. Specifically, realizing sustainability in organic optoelectronics, especially in solar cells and light-emitting devices, is a crucial milestone in the evolution of green electronics. Recently, the utilization of biological materials has appeared as an efficient means to alter the interfacial properties, and hence improve the performance, lifetime and stability of organic light-emitting diodes (OLEDs). Biological materials can be known as essential renewable bio-resources obtained from plants, animals and microorganisms. The application of biological interfacial materials (BIMs) in OLEDs is still in its early phase compared to the conventional synthetic interfacial materials; however, their fascinating features (such as their eco-friendly nature, biodegradability, easy modification, sustainability, biocompatibility, versatile structures, proton conductivity and rich functional groups) are compelling researchers around the world to construct innovative devices with enhanced efficiency. In this regard, we provide an extensive review of BIMs and their significance in the evolution of next-generation OLED devices. We highlight the electrical and physical properties of different BIMs, and address how such characteristics have been recently exploited to make efficient OLED devices. Biological materials such as ampicillin, deoxyribonucleic acid (DNA), nucleobases (NBs) and lignin derivatives have demonstrated significant potential as hole/electron transport layers as well as hole/electron blocking layers for OLED devices. Biological materials capable of generating a strong interfacial dipole can be considered as a promising prospect for alternative interlayer materials for OLED applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Im, Yirang, Seong Yong Byun, Ji Han Kim, Dong Ryun Lee, Chan Seok Oh, Kyoung Soo Yook und Jun Yeob Lee. „Recent Progress in High-Efficiency Blue-Light-Emitting Materials for Organic Light-Emitting Diodes“. Advanced Functional Materials 27, Nr. 13 (20.02.2017): 1603007. http://dx.doi.org/10.1002/adfm.201603007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Yook, Kyoung Soo, und Jun Yeob Lee. „Organic Materials for Deep Blue Phosphorescent Organic Light-Emitting Diodes“. Advanced Materials 24, Nr. 24 (29.05.2012): 3169–90. http://dx.doi.org/10.1002/adma.201200627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zhou, Yubu, Huayu Gao, Jing Wang, Fion Sze Yan Yeung, Shenghuang Lin, Xianbo Li, Shaolin Liao, Dongxiang Luo, Hoi Sing Kwok und Baiquan Liu. „Organic Light-Emitting Diodes with Ultrathin Emitting Nanolayers“. Electronics 12, Nr. 14 (21.07.2023): 3164. http://dx.doi.org/10.3390/electronics12143164.

Der volle Inhalt der Quelle
Annotation:
Organic light-emitting diodes (OLEDs) are promising for displays and lighting technologies because of their excellent advantages, such as high efficiency, high luminance, low power consumption, light weight, and flexibility. In recent years, ultrathin emitting nanolayers (UENs) have been used to develop OLEDs without the doping technique, which can simplify device structure, reduce material loss, achieve good exciton utilization, and realize comparable performance to doped devices such as the external quantum efficiency of 28.16%, current efficiency of 63.84 cd/A, and power efficiency of 76.70 Lm/W for white OLEDs. In this review, we comprehensively summarize the recent progress in the field of UEN-based OLEDs. Firstly, the host–guest-doped OLEDs and doping-free UEN-based OLEDs are compared. Then, various effective approaches for designing UEN-based OLEDs are presented, including both monochromatic and white devices. In particular, the properties of materials, the design of device structures, and the main working mechanisms of UEN-based OLEDs are highlighted. Finally, an outlook on the future development of UEN-based OLEDs is provided.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Fan, Lingjie, Maoxiong Zhao, Jiao Chu, Tangyao Shen, Minjia Zheng, Fang Guan, Haiwei Yin, Lei Shi und Jian Zi. „Full description of dipole orientation in organic light-emitting diodes“. Chinese Optics Letters 21, Nr. 2 (2023): 022601. http://dx.doi.org/10.3788/col202321.022601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

So, Franky, Song Shi und H. C. Lee. „Organic Electroluminescence Displays“. International Journal of High Speed Electronics and Systems 08, Nr. 02 (Juni 1997): 247–63. http://dx.doi.org/10.1142/s0129156497000081.

Der volle Inhalt der Quelle
Annotation:
Recently, organic light emitting diodes have received a lot of attention in different research laboratories world-wide. Red, green and blue emitting devices are readily available. Devices with luminous efficiencies greater than 15 lm/W and lifetimes longer than 10,000 hours have been demonstrated. In this article, we will discuss the basic devices used in physics, materials used in organic light emitting diodes, device degradation mechanisms, and the opportunities of using this technology for commercial display applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

D'Iorio, M. „Molecular materials for micro-electronics“. Canadian Journal of Physics 78, Nr. 3 (02.04.2000): 231–41. http://dx.doi.org/10.1139/p00-033.

Der volle Inhalt der Quelle
Annotation:
Molecular organic materials have had an illustrious past but the ability to deposit these as homogeneous thin films has rejuvenated the field and led to organic light-emitting diodes (OLEDs) and the development of an increasing number of high-performance polymers for nonlinear and electronic applications. Whereas the use of organic materials in micro-electronics was restricted to photoresists for patterning purposes, polymeric materials are coming of age as metallic interconnects, flexible substrates, insulators, and semiconductors in all-plastic electronics. The focus of this topical review will be on organic light-emitting devices with a discussion of the most recent developments in electronic devices.PACS Nos.: 85.60Jb, 78.60Fi, 78.55Kz, 78.66Qn, 73.61Ph, 72.80Le
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Jang, Chun Keun, Cheol Jun Song, Ji Hyun Park, Wang Yao und Jae Yun Jaung. „Red-emitting Materials Derived from 2,3-dicyanopyrazine for Organic Light Emitting Devices“. Journal of Chemical Research 37, Nr. 1 (Januar 2013): 57–61. http://dx.doi.org/10.3184/174751912x13554011072941.

Der volle Inhalt der Quelle
Annotation:
Styryl-substituted derivatives of 2,3-dicyanopyrazine were designed and synthesised by the Knoevenagel condensation of 2,3-dicyano-5-methylpyrazines with 4-(diphenylamino)benzaldehyde for use as red-emitting fluorescent dyes in organic light-emitting devices. Structural analysis of the red-emitting styryl fluorescent dyes was carried out using 1H NMR, FT-IR, and elemental analysis. The electroluminescent performance of multi-layered organic light-emitting devices fabricated with the triphenylamine-substituted dicyanopyrazine compound as the emitting layer achieved a current efficiency of 1.57 cd A-1 in the green region with CIE coordinates of (0.37, 0.51). However, the green emission (525 nm) observed from the tris-(8-hydroxyquinolinato)aluminum(III) (Alq3) electron-transport layer indicated the action of a recombination phenomenon between the emitting layer and the Alq3 electron-transport layer. The device fabricated with the tert-butylphenyl-substituted compound achieved a current efficiency of 0.238 cd A-1 in the red region with CIE coordinates of (0.54, 0.42) and showed no recombination phenomenon.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Habrard, F., T. Ouisse, O. Stéphan, L. Aubouy, Ph Gerbier, L. Hirsch, N. Huby und A. Van der Lee. „Organic light-emitting diodes and organic light-emitting electrochemical cells based on silole–fluorene derivatives“. Synthetic Metals 156, Nr. 18-20 (November 2006): 1262–70. http://dx.doi.org/10.1016/j.synthmet.2006.09.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Gu, Gong, Zilan Shen, Paul E. Burrows und S. R. Forrest. „Transparent flexible organic light-emitting devices“. Advanced Materials 9, Nr. 9 (1997): 725–28. http://dx.doi.org/10.1002/adma.19970090910.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Morais, Tony Dantes de, Frederic Chaput, Khalid Lahlil und Jean-Pierre Boilot. „Hybrid Organic-Inorganic Light-Emitting Diodes“. Advanced Materials 11, Nr. 2 (Februar 1999): 107–12. http://dx.doi.org/10.1002/(sici)1521-4095(199902)11:2<107::aid-adma107>3.0.co;2-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Wallikewitz, Bodo H., Matthias de la Rosa, Jonas H. W. M. Kremer, Dirk Hertel und Klaus Meerholz. „A Lasing Organic Light-Emitting Diode“. Advanced Materials 22, Nr. 4 (26.01.2010): 531–34. http://dx.doi.org/10.1002/adma.200902451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Qin, Zhengsheng, Haikuo Gao, Jinyu Liu, Ke Zhou, Jie Li, Yangyang Dang, Le Huang et al. „Organic Light‐Emitting Transistors: High‐Efficiency Single‐Component Organic Light‐Emitting Transistors (Adv. Mater. 37/2019)“. Advanced Materials 31, Nr. 37 (September 2019): 1970266. http://dx.doi.org/10.1002/adma.201970266.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Yamamoto, Hiromichi, John Wilkinson, James P. Long, Konrad Bussman, Joseph A. Christodoulides und Zakya H. Kafafi. „Nanoscale Organic Light-Emitting Diodes“. Nano Letters 5, Nr. 12 (Dezember 2005): 2485–88. http://dx.doi.org/10.1021/nl051811+.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Yang, Bing Xue, Qing Yu Ma und Jian Quan Li. „Synthesis Photosical Properties of Silicon-Containing Cross-Linked Polymer“. Advanced Materials Research 1120-1121 (Juli 2015): 446–50. http://dx.doi.org/10.4028/www.scientific.net/amr.1120-1121.446.

Der volle Inhalt der Quelle
Annotation:
Organic light-emitting materials in Organic Light-emitting Diodes(OLED) reserch in a very important posotion, the quality of materials directly affect the level of luminous efficiency of the device. We chose benzene 2,6-alkynyl, respectively, and tetrakis (4-bromophenyl) silane, tetrakis (3-bromophenyl) silane synthesis of new cross-linked polymer, the structure was characterized by solid NMR, by fluorescence chromatography UV crosslinking compound characterization of chromatographic performance in photophysical aspects may choose to add a new organic light-emitting material.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Moon, D. G., R. B. Pode, C. J. Lee und J. I. Han. „Efficient red electrophosphorescent top-emitting organic light-emitting devices“. Materials Science and Engineering: B 121, Nr. 3 (August 2005): 232–37. http://dx.doi.org/10.1016/j.mseb.2005.04.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Shah, Bipin K., Douglas C. Neckers, Jianmin Shi, Eric W. Forsythe und David Morton. „Anthanthrene Derivatives as Blue Emitting Materials for Organic Light-Emitting Diode Applications“. Chemistry of Materials 18, Nr. 3 (Februar 2006): 603–8. http://dx.doi.org/10.1021/cm052188x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Tang, Ze Biao, Xiao Xia Sun und Pei Lin Zhang. „Synthesis of D-A Type Organic Molecules Based on Carbazole and Phenothiazine for Organic Light-Emitting Materials“. Advanced Materials Research 1061-1062 (Dezember 2014): 307–10. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.307.

Der volle Inhalt der Quelle
Annotation:
Novel D-A type conjugated organic molecules composed of central carbazole and phenothiazine units and aldehyde terminal groups have been designed and constructed. Optical properties of the resulting compounds were examined by the mean of UV-vis and fluorescence spectroscopies. The fluorescence spectra of the molecule C2 based on central carbazole unit show strong emission peaks in the blue light regions, which are expected to be promising light-emitting materials for organic light-emitting diodes applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Pham, Hong Duc, Li Xianqiang, Wenhui Li, Sergei Manzhos, Aung Ko Ko Kyaw und Prashant Sonar. „Organic interfacial materials for perovskite-based optoelectronic devices“. Energy & Environmental Science 12, Nr. 4 (2019): 1177–209. http://dx.doi.org/10.1039/c8ee02744g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Dudin, Vladyslav, Vita Ivanova, Nataliia Gordiiko, Sergiy Ponomarenko und Gennady Monastyrsky. „NEW THIOPHENE BASED MATERIALS FOR EMISSIVE LAYERS OF ORGANIC LIGHT-EMITTING DIODES“. Bulletin of Kyiv Polytechnic Institute. Series Instrument Making, Nr. 65(1) (30.06.2023): 47–51. http://dx.doi.org/10.20535/1970.65(1).2023.283314.

Der volle Inhalt der Quelle
Annotation:
Optoelectronic display devices have gained an important role in the modern world. Digital displays based on organic light-emitting diodes are taking one of the leading places among other displays due to high contrast and high-quality color gamut. The relative novelty of the technology is the reason for the insufficient number of researched materials for use in layers of organic light-emitting diodes. This paper analyzes the properties of molecular structures based on thiophene heterocycles, as well as the feasibility of their use for displays on exclusively organic light-emitting diodes and in complex technologies, such quantum dots color converter. Three thiophene structures of type T (thiophene), TB (thiophene-benzene), TPy (thiophene-pyrrole) were chosen for the study. Modeling and computing of characteristics of molecular structures was performed with the software for quantum chemical calculations Gaussian 09 due to the wide range of quantum chemical methods implemented in it, as well as high efficiency and convenient user interface. With the help of the selected software, modeling of molecules, optimization by B3LYP methods, and the values of HOMO and LUMO energy levels were calculated. Emission and absorption spectra of T, TB and TPy type structures were obtained. Based on the obtained results, the possible application of structures in the emitting layers of organic LEDs was determined. T-type molecules can be used as a material for creating a self-emitting layer for organic light-emitting diodes in the visible wavelength range. Molecules of the TB-type are suitable for creating devices with radiation in the ultraviolet range. Molecules of the TPy-type have no prospects for use in direct OLED radiation, but their characteristics allow us to propose these structures as sources of exciting radiation for the creation of devices with light color conversion technologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Li, Jiuyan, und Di Liu. „Dendrimers for organic light-emitting diodes“. Journal of Materials Chemistry 19, Nr. 41 (2009): 7584. http://dx.doi.org/10.1039/b901618j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Fuhrmann, Thomas, und Josef Salbeck. „Organic Materials for Photonic Devices“. MRS Bulletin 28, Nr. 5 (Mai 2003): 354–59. http://dx.doi.org/10.1557/mrs2003.100.

Der volle Inhalt der Quelle
Annotation:
AbstractCurrent issues in the development of organic materials for photonic applications are reviewed. Organic light-emitting diodes, which are a main focus of industrial research at the moment, are given special emphasis. Other applications in optical communications technology, including organic solid-state lasers, optical switching devices, and data storage, are also covered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Hande, Savithri, und Prajna K B. „Survey on Organic Light Emitting Diode“. International Journal of Innovative Science and Research Technology 5, Nr. 6 (02.07.2020): 630–36. http://dx.doi.org/10.38124/ijisrt20jun492.

Der volle Inhalt der Quelle
Annotation:
Organic light emitting diodes is a new display technology, which uses organic thin materials that are placed between conductors. When an electric current is applied, a bright light is emitted. OLEDs are thin, transparent, flexible, foldable displays. In 1987 researchers of Eastman Kodak company invented OLED diode technology. The principal inventors were Chemists Ching W. Tang and Steven Van Slyke. In 2001 they received an Industrial Innovation Award from the American Chemical Society for their contribution in organic light emitting diodes. In 2003, Kodak realised its first OLED display had 512 by 218 pixels, 2.2 inch. Two technologies necessary to make flexible OLEDs were invented by Researchers at Pacific Northwest National Laboratory and the Department of Energy. Many researchers are contributing to improve the OLED technology. In this paper we give a brief of what is OLED, types of OLED, different fabrication methods of OLED, advantages and disadvantages of OLED.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Cheng, Gang, Yi Zhao, Jingying Hou, Yu Duan, Yuguang Ma und Shiyong Liu. „White organic light-emitting devices“. Optical and Quantum Electronics 36, Nr. 14 (November 2004): 1193–203. http://dx.doi.org/10.1007/s11082-004-3550-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie