Auswahl der wissenschaftlichen Literatur zum Thema „Organic groups“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Organic groups" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Organic groups"

1

Yamamoto, Katsutoshi, Yuki Nohara, Yusuke Domon, Yoko Takahashi, Yasuyuki Sakata, Jacques Plévert und Takashi Tatsumi. „Organic−Inorganic Hybrid Zeolites with Framework Organic Groups“. Chemistry of Materials 17, Nr. 15 (Juli 2005): 3913–20. http://dx.doi.org/10.1021/cm048367g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wan, Ying, Dieqing Zhang, Na Hao und Dongyuan Zhao. „Organic groups functionalised mesoporous silicates“. International Journal of Nanotechnology 4, Nr. 1/2 (2007): 66. http://dx.doi.org/10.1504/ijnt.2007.012316.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hodge, P. „Protective groups in organic synthesis“. Polymer 33, Nr. 16 (Januar 1992): 3542. http://dx.doi.org/10.1016/0032-3861(92)91123-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wilson, A. J. C. „Space groups rare for organic compounds“. Acta Crystallographica Section A Foundations of Crystallography 43, a1 (12.08.1987): C289. http://dx.doi.org/10.1107/s0108767387077717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dral, A. Petra, und Johan E. ten Elshof. „Organic groups influencing microporosity in organosilicas“. Microporous and Mesoporous Materials 267 (September 2018): 267–73. http://dx.doi.org/10.1016/j.micromeso.2018.03.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Creyghton, Edward J. „Organic groups cling to the pores“. Nature 393, Nr. 6680 (Mai 1998): 21–22. http://dx.doi.org/10.1038/29886.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ravikumar, Velayutham, Andrea Fin, Naomi Sakai und Stefan Matile. „Solubilising groups: a conceptual equivalent of protecting groups in organic synthesis“. Supramolecular Chemistry 23, Nr. 1-2 (31.08.2010): 69–73. http://dx.doi.org/10.1080/10610278.2010.510193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Surtiningsih, Tini, Fatimah Fatimah, Ni’matuzahroh Ni’matuzahroh, Agus Supriyanto und Tri Nurhariyati. „PELATIHAN PEMBUATAN PUPUK ORGANIK CAIR PADA KELOMPOK TANI DI KABUPATEN PROBOLINGGO“. Jurnal Layanan Masyarakat (Journal of Public Services) 2, Nr. 1 (10.06.2020): 21. http://dx.doi.org/10.20473/jlm.v2i1.2018.21-24.

Der volle Inhalt der Quelle
Annotation:
This community service aims to apply the method of making and liquid organic fertilizer and improving the skills of farmers in making liquid organic fertilizer. In addition to reducing the dependence of farmer groups on inorganic fertilizers and utilizing the results of sugarcane waste, namely molasses and microbes as a formula in the manufacture of liquid organic fertilizer. The method that was carried out was to increase insight into liquid organic fertilizer, and how to make it. The results of the socialization of liquid organic fertilizers showed that the insights of farmer groups increased by an average of 77% through the pretest and post test values during socialization. Based on the evaluation shows that the farmer group has been able to make liquid organic fertilizer independently. The socialization of making liquid organic fertilizer provides additional insight for farmer groups on the use of liquid organic fertilizer for agriculture.AbstrakPengabdian kepada masyarakat ini bertujuan untuk menerapkan cara pembuatan dan pupuk organik cair dan meningkatkan keterampilan petani dalam membuat pupuk organik cair. Selain itu untuk mengurangi ketergantungan kelompok tani terhadap pupuk anorganik dan memanfaatkan hasil limbah tebu yaitu molase dan mikroba sebagai formula dalam pembuatan pupuk organik cair. Metode yang dilakukan adalah peningkatan wawasan mengenai pupuk organik cair, dan cara pembuatannya. Hasil sosialisasi pupuk organik cairmenunjukkan bahwa wawasan kelompok tani meningkat rata-rata sebesar 77% melalui nilai pretest dan post test saat sosialisasi. Berdasarkan evaluasi menunjukkan bahwa kelompok tani telah mampu membuat pupuk organik cair secara mandiri. Sosialisasi pembuatan pupuk organik cair memberikan tambahan wawasan bagi kelompok tani terhadap pemanfaatan pupuk organik cair bagi pertanian.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jarowicki, Krzysztof, und Philip Kocienski. „Protecting groups“. Contemporary Organic Synthesis 2, Nr. 5 (1995): 315. http://dx.doi.org/10.1039/co9950200315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jarowicki, Krzysztof, und Philip Kocienski. „Protecting groups“. Contemporary Organic Synthesis 3, Nr. 5 (1996): 397. http://dx.doi.org/10.1039/co9960300397.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Organic groups"

1

Dunlop, J. E. „Coordinated leaving groups in organic synthesis“. Thesis, Bucks New University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374820.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mouselmani, Rim. „Reduction of Organic Functional Groups Using Hypophosphites“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1241/document.

Der volle Inhalt der Quelle
Annotation:
Récemment, les exigences en chimie ont évolué rapidement, car le développement durable a retenu plus d'attention. Les principes de la chimie verte ont encouragé les chimistes à développer des produits chimiques et des procédés qui réduisent ou éliminent les substances dangereuses. Les travaux de recherche décrits dans cette thèse portent sur le développement de nouveaux systèmes réducteurs en utilisant des hypophosphites comme substituts aux agents réducteurs toxiques traditionnels.Pour atteindre cet objectif, les nitriles aromatiques ont été réduits en aldéhydes correspondants par la formation du gaz de l’hydrogène et de nanoparticules de nickel en combinant un précurseur de nickel avec de l'hypophosphite de calcium en présence d'une base dans un milieu biphasique. De plus, les nitriles aromatiques ont été réduits en amines primaires en utilisant de l'hypophosphite de calcium et le catalyseur hétérogène palladium sur le carbone. La nature du catalyseur métallique, les additifs, les solvants, la température et les concentrations ont été étudiés en détail.D'autre part, l'amination réductrice directe des cétones aliphatiques et aromatiques a été réalisée pour la première fois en utilisant du palladium hétérogène sur du carbone et de l'hypophosphite d'ammonium qui agit comme une source d'ammoniac et un agent réducteur en même temps. Au cours de l'optimisation, des différents paramètres ont été étudiés
Recently, requirements in chemistry are changing fast, since sustainable development has retained more attention. Green chemistry principles have promoted chemists to develop chemical products and processes that reduce or eliminate hazardous substances. The research work described in this thesis is focused on the development of new reducing systems using hypophosphites as substitutes for traditional toxic reducing agents.In order to achieve this goal, aromatic nitriles were reduced into the corresponding aldehydes by the formation of hydrogen gas and nickel nanoparticles upon combining a nickel precursor with calcium hypophosphite in the presence of base in a biphasic medium. Moreover, aromatic nitriles were reduced into primary amines using calcium hypophosphite and the heterogeneous catalyst palladium on carbon. The nature of the metal catalyst, additives, solvents, temperature, and concentrations were studied in details.On the other hand, the well-known direct reductive amination of aliphatic and aromatic ketones was done for the first time using heterogeneous palladium on carbon, and ammonium hypophosphite which acts as a source of ammonia and as a reducing agent at the same time. During optimization different parameters were studied
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nomura, Glenn Sterling. „Derivatives of 4-ketoperhydroazulene with bridgehead methyl groups“. Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/27064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lee, Duckhee. „The design of organosilyl groups to control organic reactions“. Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ahmed, K. M. „Diels-Alder reaction of quinones carrying electron-withdrawing groups“. Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hussain, Firasat [Verfasser]. „Hybrid organic-inorganic polyoxometalates functionalized by diorganotin groups / Firasat Hussain“. Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2008. http://d-nb.info/1034891162/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Longstaff, Peter A. „Novel side chain protecting groups for solid phase peptide synthesis“. Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/15232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Korzycka, Karolina Anna. „Two-photon sensitive protecting groups for biological application“. Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:7e895ed2-04a5-4c0b-9105-74461eae8796.

Der volle Inhalt der Quelle
Annotation:
Caged compounds are a class of photosensitive reagents used to stimulate cells with spatial control down to a sub-cellular level, and millisecond temporal control. They comprise of biologically important molecule which is modified with a photolabile protecting group. In the absence of light, caged compounds are physiologically silent but irradiation with light induces the release of biologically active species. Illumination under two-photon conditions is particularly advantageous as it enables restriction of the photolysis volume to ~1 fL and it provides deeper penetration into scattering samples. This thesis reports the development of new protecting groups for two-photon uncaging in neuroscience. Mechanistically, the deprotection in these novel groups is designed to operate via an intramolecular photoinduced electron transfer (PeT) between the absorbing unit (electron-donor) and the release module (electron-acceptor). The modular design of these cages ensures separation of absorption and release steps, and allows each process to be tuned and optimized independently. Chapter 1 provides an introduction to the two-photon absorption phenomenon and a historic overview of the uncaging technique. It also discusses recent advances in the development of two-photon sensitive probes used in neuroscience. Chapter 2 describes the exploration of molecular designs for novel protecting groups. A two-photon absorbing dye (electron-donor; fluorene dye) and three different release units (electron-acceptors; nitrobenzyl, pyridinium and phenacyl) were identified as suitable building blocks for the current project. Efficiency of the intramolecular electron transfer between chosen units was evaluated using model dyads which constitute covalently linked electron-donor and acceptor species. Chapter 3 is devoted to the synthesis and photophysical evaluation of nitrobenzyl-based protecting group. Chapter 4 describes the preparation of pyridinium-derived protecting group and demonstrates PeT-mediated release of tryptophan and GABA under one- and two-photon excitation. Hydrolytic instability of pyridinium esters is highlighted. Chapter 5 reports the synthesis, hydrolytic stability and one-photon uncaging efficiency of phenacyl-based derivatives. Chapter 6 discusses properties of developed caged compounds and compares them with other compounds reported in literature. It contains overall conclusions and outlook for the current project. Chapter 7 details the experimental procedures and the characterization of compounds synthesized during this work.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

He, Chaobin. „Synthesis and structure of rigid chain polyamides with bulky side groups“. Thesis, University of Cambridge, 1994. https://www.repository.cam.ac.uk/handle/1810/273003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Deodhar, Bhushan S. „Towards the development of rotaxanes with two functional blocking groups“. University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1311690891.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Organic groups"

1

Protecting groups. 3. Aufl. Stuttgart: Georg Thieme, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Protecting groups. Stuttgart: G. Thieme, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Protecting groups. Stuttgart: G. Thieme, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

M, Wuts Peter G., Hrsg. Protective groups in organic synthesis. 3. Aufl. New York: Wiley, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

McOmie, J. F. W., Hrsg. Protective Groups in Organic Chemistry. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4684-7218-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Greene, Theodora W. Protective groups in organic synthesis. 2. Aufl. New York: Wiley, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wuts, Peter G. M., Hrsg. Greene's Protective Groups in Organic Synthesis. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118905074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gordon, Hanna J., Hrsg. Quantitative organic analysis via functional groups. 4. Aufl. Malabar, Fla: R.E. Krieger Pub. Co., 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

R, Katritzky Alan, Meth-Cohn Otto, Rees Charles W und Ley Steven V, Hrsg. Comprehensive organic functional group transformations. Oxford: Pergamon, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

R, Katritzky Alan, Meth-Cohn Otto, Rees Charles W und Pattenden Gerald, Hrsg. Comprehensive organic functional group transformations. Oxford: Pergamon, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Organic groups"

1

Sarker, Satyajit D., und Lutfun Nahar. „Organic Functional Groups“. In Chemistry for Pharmacy Students, 59–189. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9781118687529.ch4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Boons, G. J. „Protecting Groups“. In Organic Synthesis with Carbohydrates, 26–55. Sheffield, UK: Sheffield Academic Press Ltd, 2008. http://dx.doi.org/10.1002/9780470760321.ch2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gutman, Ivan, und Oskar E. Polansky. „Automorphism Groups“. In Mathematical Concepts in Organic Chemistry, 108–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70982-1_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gutman, Ivan, und Oskar E. Polansky. „Symmetry Groups“. In Mathematical Concepts in Organic Chemistry, 85–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70982-1_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Burgess, D. A. „Organic Chemistry — Functional Groups“. In Work Out Chemistry ‘A’ Level, 158–68. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-24067-8_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vančik, Hrvoj. „Functional Groups“. In Basic Organic Chemistry for the Life Sciences, 17–20. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07605-8_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Vančik, Hrvoj. „Functional Groups“. In Basic Organic Chemistry for the Life Sciences, 19–22. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92438-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Saunders, K. J. „Other Aromatic Polymers Containing p-Phenylene Groups“. In Organic Polymer Chemistry, 265–85. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1195-6_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Carey, Francis A., und Richard J. Sundberg. „Reactions of Carbon Nucleophiles with Carbonyl Groups“. In Advanced Organic Chemistry, 55–120. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9797-7_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Carey, Francis A., und Richard J. Sundberg. „Reduction of Carbonyl and Other Functional Groups“. In Advanced Organic Chemistry, 219–81. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9797-7_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Organic groups"

1

Natansohn, A., P. Rochon, J. Mao und S. Xie. „Optical Storage in Polymers Containing Azo Groups without Electron-Donor - Electron Acceptor Substituents: Poly[4-(2-methacryloyloxy)ethyl-azobenzene]“. In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.25.

Der volle Inhalt der Quelle
Annotation:
Some degree of supramolecular organization can be induced in amorphous polymers containing azobenzene groups by means of polarized light. This phenomenon has been known for about a decade and the relevant literature has been reviewed in one of our recent publications1. This induced preferred orientation of the azobenzene groups can be monitored by a significant change in the refractive index of the polymer film and can thus be usea as an information storage mechanism. Circularly polarized light restores the natural disorder of the azobenzene orientations, enabling erasure of the stored information1-5. This phenomenon was first noticed on polymers doped with substituted azobenzenes and was intensively studied on liquid crystalline polymers containing substituted azobenzenes as the mesogenic group. Probably by chance - due to the availability of various azo dyes and to the ease of synthesis - almost all examples previously studied in the literature had electron-donor and electron-acceptor substituents on the azobenzene groups. Their presence conferred another important dimension to this type of supramolecular organization: starting with a polarizable group one could induce second order nonlinear susceptibility in the material, thus opening the possibility of applications in photonics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Padmaperuma, Asanga B., und Carlos A. Fernandez. „Heteroleptic cyclometalated Ir(III) complexes with charge transporting groups: a theoretical study“. In SPIE Organic Photonics + Electronics, herausgegeben von Franky So und Chihaya Adachi. SPIE, 2012. http://dx.doi.org/10.1117/12.949510.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Berkovic, Garry, G. M. Meshulam, Z. Kotler, A. Ben-Asuly, L. Shapiro und V. Khodorkovsky. „Unique two-dimensional effects in the first hyper- polarizability of molecules with carbazole donor groups“. In Organic Thin Films. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/otf.1999.sae8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kristanti, Novita Erma, Nafis Khuriyati, Agustinus Winarno und Sintia Putri Pradita. „Development of Marketing Channels and Packaging Innovation on “JOSS” Organic Rice to Increase Added Value“. In 3rd International Conference on Community Engagement and Education for Sustainable Development. AIJR Publisher, 2023. http://dx.doi.org/10.21467/proceedings.151.36.

Der volle Inhalt der Quelle
Annotation:
The development of organic farming in Jatisarono Village, Kapanewon Nanggulan, Kulon Progo, Yogyakarta is being carried out by three groups of farmers with 150 members. Organic rice is a superior commodity under the JOSS brand (Jatisarono Organik Sehat Sejahtera). JOSS organic rice product is registered as an organic certificate institution with the number 390-LSO-005-IDN-11-20. Problems regarding marketing channels and packaging still need to be solved. Market access capability for selling organic rice still needs to be improved. At the same time, the packaging used is still simple and has yet to consider more detailed packaging aspects. This community service aims to conduct education on developing marketing channels and JOSS organic rice packaging innovation. The education carried out involves basic research, so the recommendations are expected to improve the economy of farmer groups and the community in Jatisarono Village. The method used in community service activities is an integrated approach consisting of farmer groups, JOSS organic rice business activities, and university participation. The development of marketing channels is implemented based on supply chain adequacy and market behavior based on price levels. Product development is applied to create packaging innovation designs. The activities carried out were socialization regarding marketing channels and rice packaging to farmer groups, focus group discussions with experts on determining target markets and packaging innovation designs, workshops on various packaging design alternatives, and delivery of results regarding alternatives to other marketing access and packaging design results. The outputs of this community activity are the development of markets and marketing channels which have been carried out in two stages in cooperatives and minimarkets around Universitas Gadjah Mada, and three designs of organic rice packaging based on consumer suggestions and following mandatory packaging aspects on rice according to Minister of Trade Regulation No. 8 of 2019.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

A., Cidlina, Novakova V. und Zimcik P. „Synthesis of non-peripherally substituted phthalocyanines with alkylsulfanyl groups“. In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013998435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Brown, D., A. Natansohn, P. Rochon und S. Xie. „Optically Induced Birefringence in Copolymers and Blends Containing Azobenzene Groups“. In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.thd.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fort, Alain, Jacques Muller, Joel Azoulay, Marguerite Barzoukas, Valérie Alain und Mireille Blanchard-Desce. „Characterization of Push-Pull Polyenes of Increasing Size: Linear and Quadratic Polarizabilities in Solution“. In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/otfa.1997.wc.4.

Der volle Inhalt der Quelle
Annotation:
Push-pull molecules have been extensively studied for their properties in the field of quadratic nonlinear optics. Such molecules consist of electron-donor and electron acceptor substituents connected via a conjugation path. The partial intramolecular charge transfer (ICT) between these end groups can lead to large ground-state dipoles μ. Also, they can display huge static quadratic hyperpolarizabilities β(0) related to the occurence of the ICT transition between the ground and first-excited states [1].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zucolotto Cocca, Leandro Henrique, João Victor Pereira Valverde, Rafael Queiros Marcia, Alfredo Leithold Neto, Andreia Gerniski Macedo, Paula Cristina Rodrigues, Cleber Renato Mendonça und Leonardo De Boni. „Diketopyrrolopyrrole derivatives: influence of peripheral groups in the excited states absorption process“. In Organic Photonic Materials and Devices XXVI, herausgegeben von Ileana Rau, Okihiro Sugihara und William M. Shensky. SPIE, 2024. http://dx.doi.org/10.1117/12.3002662.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shimizu, Y., K. Oikawa, H. Monobe, K. Nakayama, B. Heinrich und D. Guillon. „Organic Transistor with Mesophase Semiconductors Possessing Two Thienyl Groups“. In 2008 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2008. http://dx.doi.org/10.7567/ssdm.2008.i-8-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ostroverkhova, Oksana, Nicole Quist, Mark Li, Michael M. Haley, Ryan Tollefsen und John Anthony. „Effect of molecular side groups and local nanoenvironment on photodegradation and its reversibility“. In Organic Photonic Materials and Devices XX, herausgegeben von Christopher E. Tabor, François Kajzar, Toshikuni Kaino und Yasuhiro Koike. SPIE, 2018. http://dx.doi.org/10.1117/12.2291065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Organic groups"

1

Knauss, K. G., und R. D. Aines. Experimental and theoretical modeling expertise of the Organic and Inorganic Environmental Geochemistry Groups. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/218213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kerakova, Maria, und Emilia Varadinova. Influence of the River Bottom Substrate and Sediment Organic Component on the Macrozoobenthos Functional Feeding Groups. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Januar 2020. http://dx.doi.org/10.7546/crabs.2020.01.08.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

DUDKINA, T. A. INCORPORATION OF ORGANIC MATTER INTO THE SOIL IN CROP ROTATIONS WITH DIFFERENT RATIOS OF CROP GROUPS. Ljournal, 2019. http://dx.doi.org/10.18411/issn1997-0749.2019-08-38-41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Santschi, Peter H. Complexation Reactions Between Trace Metals and Specific Functional Groups in Natural Organic Matter from Estuarine Waters. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada626695.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Saveleva, Viktoria. The use of a phosphor in light sources in a photo cabinet. Light sources with a phosphor in a photo cabinet using laser diodes. Intellectual Archive, Juli 2023. http://dx.doi.org/10.32370/iaj.2903.

Der volle Inhalt der Quelle
Annotation:
Non-thermal luminescence of a substance is called luminescence. This process occurs by absorbing excitation energy. The substance itself is called a phosphor. In chemical nature, the phosphor is divided into two groups: organic and non-organic. In fluorescent lamps and other light sources, a non-organic phosphor is used. The main purpose of using phosphor in lighting fixtures is to save energy. Another significant factor is the availability and low cost in the market. And also, the variety of colors available on the market. The use of phosphors with laser diodes is a new direction in lighting devices. It represents a huge potential for the development of innovative space lighting technologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Clearfield, Abraham. Organic Derivatives of Layered Group (4) Phosphates. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada201080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yates, Jr, und John T. Organic Functional Group Reactivities at Metal Surfaces. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1988. http://dx.doi.org/10.21236/ada203094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hoffman, F. Retardation of volatile organic compounds in ground water in low organic carbon sediments. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/39598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Castellano, Mike J., Abraham G. Shaviv, Raphael Linker und Matt Liebman. Improving nitrogen availability indicators by emphasizing correlations between gross nitrogen mineralization and the quality and quantity of labile soil organic matter fractions. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7597926.bard.

Der volle Inhalt der Quelle
Annotation:
A major goal in Israeli and U.S. agroecosystems is to maximize nitrogen availability to crops while minimizing nitrogen losses to air and water resources. This goal has presented a significant challenge to global agronomists and scientists because crops require large inputs of nitrogen (N) fertilizer to maximize yield, but N fertilizers are easily lost to surrounding ecosystems where they contribute to water pollution and greenhouse gas concentrations. Determination of the optimum N fertilizer input is complex because the amount of N produced from soil organic matter varies with time, space and management. Indicators of soil N availability may help to guide requirements for N fertilizer inputs and are increasingly viewed as indicators of soil health To address these challenges and improve N availability indicators, project 4550 “Improving nitrogen availability indicators by emphasizing correlations between gross nitrogen mineralization and the quality and quantity of labile organic matter fractions” addressed the following objectives: Link the quantity and quality of labile soil organic matter fractions to indicators of soil fertility and environmental quality including: i) laboratory potential net N mineralization ii) in situ gross N mineralization iii) in situ N accumulation on ion exchange resins iv) crop uptake of N from mineralized soil organic matter sources (non-fertilizer N), and v) soil nitrate pool size. Evaluate and compare the potential for hot water extractable organic matter (HWEOM) and particulate organic matter quantity and quality to characterize soil N dynamics in biophysically variable Israeli and U.S. agroecosystems that are managed with different N fertility sources. Ultimately, we sought to determine if nitrogen availability indicators are the same for i) gross vs. potential net N mineralization processes, ii) diverse agroecosystems (Israel vs. US) and, iii) management strategies (organic vs. inorganic N fertility sources). Nitrogen availability indicators significantly differed for gross vs. potential N mineralization processes. These results highlight that different mechanisms control each process. Although most research on N availability indicators focuses on potential net N mineralization, new research highlights that gross N mineralization may better reflect plant N availability. Results from this project identify the use of ion exchange resin (IERs) beads as a potential technical advance to improve N mineralization assays and predictors of N availability. The IERs mimic the rhizosphere by protecting mineralized N from loss and immobilization. As a result, the IERs may save time and money by providing a measurement of N mineralization that is more similar to the costly and time consuming measurement of gross N mineralization. In further search of more accurate and cost-effective predictors of N dynamics, Excitation- Emission Matrix (EEM) spectroscopy analysis of HWEOM solution has the potential to provide reliable indicators for changes in HWEOM over time. These results demonstrated that conventional methods of labile soil organic matter quantity (HWEOM) coupled with new analyses (EEM) may be used to obtain more detailed information about N dynamics. Across Israeli and US soils with organic and inorganic based N fertility sources, multiple linear regression models were developed to predict gross and potential N mineralization. The use of N availability indicators is increasing as they are incorporated into soil health assessments and agroecosystem models that guide N inputs. Results from this project suggest that some soil variables can universally predict these important ecosystem process across diverse soils, climate and agronomic management. BARD Report - Project4550 Page 2 of 249
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bair, Kimberly. Volatile organic compound (VOC) retardation in ground water. Office of Scientific and Technical Information (OSTI), Mai 1996. http://dx.doi.org/10.2172/576739.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie