Zeitschriftenartikel zum Thema „Organic electron donors (OEDs)“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Organic electron donors (OEDs).

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Organic electron donors (OEDs)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Cha, Judy J. „Intercalation and Functionalization in 2D Materials“. ECS Meeting Abstracts MA2023-01, Nr. 13 (28.08.2023): 1306. http://dx.doi.org/10.1149/ma2023-01131306mtgabs.

Der volle Inhalt der Quelle
Annotation:
The large surface areas and interlayer gaps of 2D materials enable surface functionalization and intercalation as effective post-synthesis design knobs to tune the properties of 2D materials using ions, atoms, and organic molecules. For complete engineering control, detailed understanding of the interactions between the 2D materials and the molecules adsorbed on 2D materials surface or between the 2D materials and the intercalants is necessary. I will first discuss surface functionalization to tune the electrical properties of 2D materials. We developed an experimental approach to quantitatively measure the doping powers of organic electron donors (OEDs) to monolayer MoS2. Using novel and previously studied OEDs, we demonstrate experimentally that the measured doping power is a sensitive function of molecule’s reduction potential, size, surface coverage, and orientation to 2D materials [1, 2]. I will then discuss electrochemical intercalation into 2D materials to induce novel phases that were previously undetected and to study heterointerface effects on the intercalation induced phase transition [3, 4]. We discover new structural phases in Td-WTe2 and T’-MoTe2 with lithium intercalation and these new phases are semiconducting even though the initial WTe2 and MoTe2 are semimetallic and lithium ions donate electrons to the host materials. In the lithium intercalation-induced phase transition from the 2H to 1T’ phase of MoS2, we show that the nucleation of the 1T’ phase proceeds via heterogeneous nucleation where the nature of heterointerface dictates the thermodynamics of the phase transition. For these studies, multi-modal, in-situ probes were necessary to track the changes in the structure-property relation of the layered materials as a function of intercalation. [1] Advanced Electronic Materials 7, 2000873 (2021). [2] Nano Letters 22, p.4501 (2022). [3] ACS Applied Materials & Interfaces 13, p.10603-10611 (2021). [4] Advanced Materials 34, 2200861 (2022).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Murphy, John A. „ChemInform Abstract: Organic Electron Donors“. ChemInform 43, Nr. 37 (16.08.2012): no. http://dx.doi.org/10.1002/chin.201237244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Broggi, Julie, Marion Rollet, Jean-Louis Clément, Gabriel Canard, Thierry Terme, Didier Gigmes und Patrice Vanelle. „Polymerization Initiated by Organic Electron Donors“. Angewandte Chemie International Edition 55, Nr. 20 (08.04.2016): 5994–99. http://dx.doi.org/10.1002/anie.201600327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Broggi, Julie, Marion Rollet, Jean-Louis Clément, Gabriel Canard, Thierry Terme, Didier Gigmes und Patrice Vanelle. „Polymerization Initiated by Organic Electron Donors“. Angewandte Chemie 128, Nr. 20 (08.04.2016): 6098–103. http://dx.doi.org/10.1002/ange.201600327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Broggi, Julie, Thierry Terme und Patrice Vanelle. „Organic Electron Donors as Powerful Single-Electron Reducing Agents in Organic Synthesis“. Angewandte Chemie International Edition 53, Nr. 2 (24.11.2013): 384–413. http://dx.doi.org/10.1002/anie.201209060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhou, Shengze, Hardeep Farwaha und John A. Murphy. „The Development of Organic Super Electron Donors“. CHIMIA International Journal for Chemistry 66, Nr. 6 (27.06.2012): 418–24. http://dx.doi.org/10.2533/chimia.2012.418.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rohrbach, Simon, Rushabh S. Shah, Tell Tuttle und John A. Murphy. „Neutral Organic Super Electron Donors Made Catalytic“. Angewandte Chemie International Edition 58, Nr. 33 (12.08.2019): 11454–58. http://dx.doi.org/10.1002/anie.201905814.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lowe, Grace A. „Enabling artificial photosynthesis systems with molecular recycling: A review of photo- and electrochemical methods for regenerating organic sacrificial electron donors“. Beilstein Journal of Organic Chemistry 19 (08.08.2023): 1198–215. http://dx.doi.org/10.3762/bjoc.19.88.

Der volle Inhalt der Quelle
Annotation:
This review surveys advances in the literature that impact organic sacrificial electron donor recycling in artificial photosynthesis. Systems for photocatalytic carbon dioxide reduction are optimized using sacrificial electron donors. One strategy for coupling carbon dioxide reduction and water oxidation to achieve artificial photosynthesis is to use a redox mediator, or recyclable electron donor. This review highlights photo- and electrochemical methods for recycling amines and NADH analogues that can be used as electron donors in artificial photosynthesis. Important properties of sacrificial donors and recycling strategies are also discussed. Compounds from other fields, such as redox flow batteries and decoupled water splitting research, are introduced as alternative recyclable sacrificial electron donors and their oxidation potentials are compared to the redox potentials of some model photosensitizers. The aim of this review is to act as a reference for researchers developing photocatalytic systems with sacrificial electron donors, and for researchers interested in designing new redox mediator and recyclable electron donor species.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Murphy, John A. „Discovery and Development of Organic Super-Electron-Donors“. Journal of Organic Chemistry 79, Nr. 9 (25.03.2014): 3731–46. http://dx.doi.org/10.1021/jo500071u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rohrbach, Simon, Rushabh S. Shah, Tell Tuttle und John A. Murphy. „Corrigendum: Neutral Organic Super Electron Donors Made Catalytic“. Angewandte Chemie International Edition 58, Nr. 43 (21.10.2019): 15183. http://dx.doi.org/10.1002/anie.201910425.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Rohrbach, Simon, Rushabh S. Shah, Tell Tuttle und John A. Murphy. „Berichtigung: Neutral Organic Super Electron Donors Made Catalytic“. Angewandte Chemie 131, Nr. 43 (14.10.2019): 15325. http://dx.doi.org/10.1002/ange.201910425.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Broggi, Julie, Thierry Terme und Patrice Vanelle. „ChemInform Abstract: Organic Electron Donors as Powerful Single-Electron Reducing Agents in Organic Synthesis“. ChemInform 45, Nr. 19 (23.04.2014): no. http://dx.doi.org/10.1002/chin.201419251.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Anderson, Greg M., Iain Cameron, John A. Murphy und Tell Tuttle. „Predicting the reducing power of organic super electron donors“. RSC Advances 6, Nr. 14 (2016): 11335–43. http://dx.doi.org/10.1039/c5ra26483a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kushto, Gary P., Antti J. Makinen und Paul A. Lane. „Organic Photovoltaic Cells Using Group 10 Metallophthalocyanine Electron Donors“. IEEE Journal of Selected Topics in Quantum Electronics 16, Nr. 6 (November 2010): 1552–59. http://dx.doi.org/10.1109/jstqe.2010.2052354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Guidi, Vanina V., Zhou Jin, Devin Busse, William B. Euler und Brett L. Lucht. „Bis(phosphine Imide)s: Easily Tunable Organic Electron Donors“. Journal of Organic Chemistry 70, Nr. 19 (September 2005): 7737–43. http://dx.doi.org/10.1021/jo051196u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zhou, Shengze, Hardeep Farwaha und John A. Murphy. „ChemInform Abstract: The Development of Organic Super Electron Donors“. ChemInform 43, Nr. 44 (04.10.2012): no. http://dx.doi.org/10.1002/chin.201244258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

YAMASHITA, Yoshiro. „Novel electron acceptors and donors containing fused-heterocycles.“ Journal of Synthetic Organic Chemistry, Japan 47, Nr. 12 (1989): 1108–17. http://dx.doi.org/10.5059/yukigoseikyokaishi.47.1108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hoffman, Robert V. „THE OXIDATION OF ELECTRON DONORS WITH SULFONYL PEROXIDES“. Organic Preparations and Procedures International 18, Nr. 3 (Juni 1986): 179–201. http://dx.doi.org/10.1080/00304948609458139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Doni, Eswararao, und John A. Murphy. „Evolution of neutral organic super-electron-donors and their applications“. Chem. Commun. 50, Nr. 46 (2014): 6073–87. http://dx.doi.org/10.1039/c3cc48969h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Li, Shuixing, Zhongqiang Zhang, Minmin Shi, Chang-Zhi Li und Hongzheng Chen. „Molecular electron acceptors for efficient fullerene-free organic solar cells“. Physical Chemistry Chemical Physics 19, Nr. 5 (2017): 3440–58. http://dx.doi.org/10.1039/c6cp07465k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Garnier, Jean, Douglas W. Thomson, Shengze Zhou, Phillip I. Jolly, Leonard E. A. Berlouis und John A. Murphy. „Hybrid super electron donors – preparation and reactivity“. Beilstein Journal of Organic Chemistry 8 (03.07.2012): 994–1002. http://dx.doi.org/10.3762/bjoc.8.112.

Der volle Inhalt der Quelle
Annotation:
Neutral organic electron donors, featuring pyridinylidene–imidazolylidene, pyridinylidene–benzimidazolylidene and imidazolylidene–benzimidazolylidene linkages are reported. The pyridinylidene–benzimidazolylidene and imidazolylidene–benzimidazolylidene hybrid systems were designed to be the first super electron donors to convert iodoarenes to aryl radicals at room temperature, and indeed both show evidence for significant aryl radical formation at room temperature. The stronger pyridinylidene–imidazolylidene donor converts iodoarenes to aryl anions efficiently under appropriate conditions (3 equiv of donor). The presence of excess sodium hydride base has a very important and selective effect on some of these electron-transfer reactions, and a rationale for this is proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Murphy, John A. „ChemInform Abstract: Discovery and Development of Organic Super-Electron-Donors“. ChemInform 45, Nr. 28 (26.06.2014): no. http://dx.doi.org/10.1002/chin.201428243.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Martin, Julien D., und C. Adam Dyker. „Facile preparation and isolation of neutral organic electron donors based on 4-dimethylaminopyridine“. Canadian Journal of Chemistry 96, Nr. 6 (Juni 2018): 522–25. http://dx.doi.org/10.1139/cjc-2017-0526.

Der volle Inhalt der Quelle
Annotation:
A number of new neutral bis-2-(4-dimethylamino)pyridinylidene electron donors featuring N-akyl groups of varying lengths (propyl, butyl, hexyl, dodecyl) have been prepared from 4-dimethylaminopyridine by means of a simple two-step procedure. Each derivative could be isolated in high yield and could be stored indefinitely under inert atmosphere. The electron donors were chemically oxidized to the corresponding bipyridinium ions, and all compounds were characterized by NMR spectroscopy and cyclic voltammetry. As an emerging class of electron transfer agents, the availability of the isolated neutral bispyridinylidenes should be beneficial for cases that are incompatible with generating the electron donor in situ.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wonner, P., T. Steinke und S. M. Huber. „Activation of Quinolines by Cationic Chalcogen Bond Donors“. Synlett 30, Nr. 14 (09.08.2019): 1673–78. http://dx.doi.org/10.1055/s-0039-1690110.

Der volle Inhalt der Quelle
Annotation:
The application of already established as well as novel selenium- and sulfur-based cationic chalcogen bond donors in the catalytic activation of quinoline derivatives is presented. In the presence of selected catalysts, rate accelerations of up to 2300 compared to virtually inactive reference compounds are observed. The catalyst loading can be reduced to 1 mol% while still achieving nearly full conversion for electron-poor and electron-rich quinolines. Contrary to expectations, preorganized catalysts were less active than the more flexible variants.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Santos, Fabiano S., Elamparuthi Ramasamy, V. Ramamurthy und Fabiano S. Rodembusch. „Correction: Photoinduced electron transfer across an organic molecular wall: octa acid encapsulated ESIPT dyes as electron donors“. Photochemical & Photobiological Sciences 16, Nr. 8 (2017): 1335. http://dx.doi.org/10.1039/c7pp90026k.

Der volle Inhalt der Quelle
Annotation:
Correction for ‘Photoinduced electron transfer across an organic molecular wall: octa acid encapsulated ESIPT dyes as electron donors’ by Fabiano S. Santos et al., Photochem. Photobiol. Sci., 2017, 16, 840–844.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Sandanayaka, Atula S. D., Hisahiro Sasabe, Toshikazu Takata und Osamu Ito. „Photoinduced electron transfer processes of fullerene rotaxanes containing various electron-donors“. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11, Nr. 2-3 (September 2010): 73–92. http://dx.doi.org/10.1016/j.jphotochemrev.2010.05.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Seel, Catharina Julia, Antonín Králík, Melanie Hacker, Annika Frank, Burkhard König und Tanja Gulder. „Atom-Economic Electron Donors for Photobiocatalytic Halogenations“. ChemCatChem 10, Nr. 18 (25.07.2018): 3960–63. http://dx.doi.org/10.1002/cctc.201800886.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Onitsch, Christine, Arnulf Rosspeintner, Gonzalo Angulo, Markus Griesser, Milan Kivala, Brian Frank, François Diederich und Georg Gescheidt. „Donor-Substituted Diphenylacetylene Derivatives Act as Electron Donors and Acceptors“. Journal of Organic Chemistry 76, Nr. 14 (15.07.2011): 5628–35. http://dx.doi.org/10.1021/jo2005022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Bryce, Martin R., Malcolm A. Coffin und William Clegg. „New vinylogous tetrathiafulvalene .pi.-electron donors with peripheral alkylseleno substitution“. Journal of Organic Chemistry 57, Nr. 6 (März 1992): 1696–99. http://dx.doi.org/10.1021/jo00032a018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Miao, Junhui, Bin Meng, Jun Liu und Lixiang Wang. „Small-Molecule Donor/Polymer Acceptor Type Organic Solar Cells: Effect of Terminal Groups of Small-Molecule Donors“. Organic Materials 01, Nr. 01 (November 2019): 088–94. http://dx.doi.org/10.1055/s-0039-3401017.

Der volle Inhalt der Quelle
Annotation:
Small-molecule donor/polymer acceptor type (MD/PA-type) organic solar cells (OSCs) have the great advantage of superior thermal stability. However, very few small molecular donors can match polymer acceptors, leading to low power conversion efficiency (PCE) of MD/PA-type OSCs. In this work, we studied the effect of terminal groups of small molecular donors on the optoelectronic properties and OSC device performance of MD/PA-type OSCs. We select a benzodithiophene unit bearing carbazolyl substituents as the core, terthiophene as the bridging unit, and electron-withdrawing methyl 2-cyanoacetate, 3-ethylrhodanine, and 2H-indene-1,3-dione as the terminal groups to develop three small-molecule donors. With the increase of the electron-withdrawing capability of the terminal groups, the small molecular donors exhibit redshifted absorption spectra and downshifted LUMO levels. Among the three small-molecule donors, the one with 3-ethylrhodanine terminal group exhibits the best photovoltaic performance with the PCE of 8.0% in MD/PA-type OSCs. This work provides important guidelines for the design of small-molecule donors for MD/PA-type OSC applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Jiang, Xudong, Yunhua Xu, Xiaohui Wang, Yang Wu, Guitao Feng, Cheng Li, Wei Ma und Weiwei Li. „Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor“. Physical Chemistry Chemical Physics 19, Nr. 11 (2017): 8069–75. http://dx.doi.org/10.1039/c7cp00494j.

Der volle Inhalt der Quelle
Annotation:
Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor were studied to show power conversion efficiencies of 4% with external quantum efficiencies above 0.4.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Dyachenko, V. I., B. L. Tumanskii, Yu I. Lyakhovetskii, N. M. Loim, R. G. Gasanov, N. N. Bubnov, A. F. Kolomiets und A. V. Fokin. „One-electron transfer in the reactions of polyfluoroketones with organic donors“. Bulletin of the Russian Academy of Sciences Division of Chemical Science 41, Nr. 3 (März 1992): 599. http://dx.doi.org/10.1007/bf00863099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Torres, Isabela C., Kanika S. Inglett und K. R. Reddy. „Heterotrophic microbial activity in lake sediments: effects of organic electron donors“. Biogeochemistry 104, Nr. 1-3 (30.06.2010): 165–81. http://dx.doi.org/10.1007/s10533-010-9494-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Tintori, Guillaume, Pierre Nabokoff, Ruqaya Buhaibeh, David Bergé-Lefranc, Sébastien Redon, Julie Broggi und Patrice Vanelle. „Base-Free Generation of Organic Electron Donors from Air-Stable Precursors“. Angewandte Chemie 130, Nr. 12 (15.02.2018): 3202–7. http://dx.doi.org/10.1002/ange.201713079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Wang, Hua-Jing, Jing Shi, Ming Fang, Zhe Li und Qing-Xiang Guo. „Design of new neutral organic super-electron donors: a theoretical study“. Journal of Physical Organic Chemistry 23, Nr. 1 (21.08.2009): 75–83. http://dx.doi.org/10.1002/poc.1590.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Tintori, Guillaume, Pierre Nabokoff, Ruqaya Buhaibeh, David Bergé-Lefranc, Sébastien Redon, Julie Broggi und Patrice Vanelle. „Base-Free Generation of Organic Electron Donors from Air-Stable Precursors“. Angewandte Chemie International Edition 57, Nr. 12 (15.02.2018): 3148–53. http://dx.doi.org/10.1002/anie.201713079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Lazareva, N. F., und I. M. Lazarev. „α-Silyl amines as electron donors: application in synthetic organic chemistry“. Russian Chemical Bulletin 73, Nr. 4 (April 2024): 761–86. http://dx.doi.org/10.1007/s11172-024-4191-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Wang, Jinfeng, Siwei Liu, Kai Chang, Qiuyan Liao, Sheng Li, Hongwei Han, Qianqian Li und Zhen Li. „Synergy effect of electronic characteristics and spatial configurations of electron donors on photovoltaic performance of organic dyes“. Journal of Materials Chemistry C 8, Nr. 41 (2020): 14453–61. http://dx.doi.org/10.1039/d0tc02556a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Doni, Eswararao, und John A. Murphy. „Reductive decyanation of malononitriles and cyanoacetates using photoactivated neutral organic super-electron-donors“. Org. Chem. Front. 1, Nr. 9 (2014): 1072–76. http://dx.doi.org/10.1039/c4qo00202d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Zhou, T. F., X. Y. Ma, W. X. Han, X. P. Guo, R. Q. Gu, L. J. Yu, J. Li, Y. M. Zhao und Tao Wang. „D–D–A dyes with phenothiazine–carbazole/triphenylamine as double donors in photopolymerization under 455 nm and 532 nm laser beams“. Polymer Chemistry 7, Nr. 31 (2016): 5039–49. http://dx.doi.org/10.1039/c6py00918b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Molina-Ontoria, Agustín, María Gallego, Luís Echegoyen, Emilio M. Pérez und Nazario Martín. „Organic solar cells based on bowl-shaped small-molecules“. RSC Advances 5, Nr. 40 (2015): 31541–46. http://dx.doi.org/10.1039/c5ra02073e.

Der volle Inhalt der Quelle
Annotation:
A supramolecular approach involving bowl-shape molecules as electron donors has been used for the preparation of small-molecule solar cells. The PCE values depend directly on the formation of the supramolecular complex.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Miyaji, Tsutomu, Takanori Suzuki, Tsuneyuki Okubo, Akihisa Okada, Yoshiro Yamashita und Tsutomu Miyashi. „Benzidine Type Electron Donors Fused with 1,2,5-Chalcogenadiazole Units“. HETEROCYCLES 35, Nr. 1 (1993): 395. http://dx.doi.org/10.3987/com-92-s34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Tintori, Guillaume, Arona Fall, Nadhrata Assani, Yuxi Zhao, David Bergé-Lefranc, Sébastien Redon, Patrice Vanelle und Julie Broggi. „Generation of powerful organic electron donors by water-assisted decarboxylation of benzimidazolium carboxylates“. Organic Chemistry Frontiers 8, Nr. 6 (2021): 1197–205. http://dx.doi.org/10.1039/d0qo01488e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Paleti, Sri Harish Kumar, Nicola Gasparini, Christos L. Chochos und Derya Baran. „High performance conjugated terpolymers as electron donors in nonfullerene organic solar cells“. Journal of Materials Chemistry C 8, Nr. 38 (2020): 13422–29. http://dx.doi.org/10.1039/d0tc01379j.

Der volle Inhalt der Quelle
Annotation:
Three pi-conjugated terpolymers based on the nonconventional molecular design strategy D1–D2–D1–A comprising two different multi-fused ladder-type arene electron-donating units and an electron-withdrawing unit are synthesized for organic photovoltaics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Uchiyama, Takayuki, Takashi Sano, Yoshiko Okada-Shudo und Varun Vohra. „Durable organic solar cells produced by in situ encapsulation of an air-sensitive natural organic semiconductor by the fullerene derivative and the metal oxide layer“. Journal of Materials Chemistry C 8, Nr. 21 (2020): 7162–69. http://dx.doi.org/10.1039/d0tc00379d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Brancaleon, Lorenzo, Darryl Brousmiche und Linda J. Johnston. „Article“. Canadian Journal of Chemistry 77, Nr. 5-6 (01.06.1999): 787–91. http://dx.doi.org/10.1139/v99-060.

Der volle Inhalt der Quelle
Annotation:
The electron transfer photochemistry of 2,3-dicyanonaphthalene has been studied by a combination of fluorescence and transient absorption spectroscopy. The singlet excited state has a lifetime of 26 ns in acetonitrile and reacts with aromatic and alkene donors with oxidation potentials less than ~1.8 V with rate constants that are close to the diffusion-controlled limit. Transient absorption measurements demonstrate that the fluorescence quenching leads to efficient formation of free-radical ions. The radical ion yields have been measured for several donors and are compared to those for the more commonly used sensitizer, 1.4-dicyanonaphthalene. In the absence of added donors, direct excitation of 2,3-dicyanonaphthalene provides evidence for photoionization at high laser energy, in addition to triplet formation. The results illustrate the utility of this sensitizer for photoinduced electron transfer reactions.Key words: photoinduced electron transfer, laser flash photolysis, fluorescence, photosensitizers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Sun, Jian-Ke, Ya-Jun Zhang, Gui-Peng Yu, Jie Zhang, Markus Antonietti und Jiayin Yuan. „Three birds, one stone – photo-/piezo-/chemochromism in one conjugated nanoporous ionic organic network“. Journal of Materials Chemistry C 6, Nr. 34 (2018): 9065–70. http://dx.doi.org/10.1039/c8tc01324a.

Der volle Inhalt der Quelle
Annotation:
A nanoporous material bearing a high ion density and inherent organic radical character was synthesized by a facile one-pot process, which exhibits photo-, piezo- and chemochromism, driven by the diverse electron transfer processes between the acceptor framework and different electron donors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Quinton, Cassandre, Valérie Alain-Rizzo, Cécile Dumas-Verdes, Gilles Clavier, Laurence Vignau und Pierre Audebert. „Triphenylamine/tetrazine based π-conjugated systems as molecular donors for organic solar cells“. New Journal of Chemistry 39, Nr. 12 (2015): 9700–9713. http://dx.doi.org/10.1039/c5nj02097b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Rueping, Magnus, Pavlo Nikolaienko, Yury Lebedev und Alina Adams. „Metal-free reduction of the greenhouse gas sulfur hexafluoride, formation of SF5 containing ion pairs and the application in fluorinations“. Green Chemistry 19, Nr. 11 (2017): 2571–75. http://dx.doi.org/10.1039/c7gc00877e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Yang, Zhenqing, Changjin Shao und Dapeng Cao. „Screening donor groups of organic dyes for dye-sensitized solar cells“. RSC Advances 5, Nr. 29 (2015): 22892–98. http://dx.doi.org/10.1039/c4ra17261b.

Der volle Inhalt der Quelle
Annotation:
Based on an experimentally synthesized dye D5 (also named d01 here), we designed and screened a series of dyes d02–d12 with different electron donors, and recommended several high performance dyes for DSSCs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie