Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optomechanical sensing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optomechanical sensing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optomechanical sensing"
Li, Bei-Bei, Lingfeng Ou, Yuechen Lei und Yong-Chun Liu. „Cavity optomechanical sensing“. Nanophotonics 10, Nr. 11 (24.08.2021): 2799–832. http://dx.doi.org/10.1515/nanoph-2021-0256.
Der volle Inhalt der QuelleHuang, Wenyi, Senyu Zhang, Jamal N. A. Hassan, Xing Yan, Dingwei Chen, Guangjun Wen, Kai Chen, Guangwei Deng und Yongjun Huang. „High-precision angular rate detection based on an optomechanical micro hemispherical shell resonator gyroscope“. Optics Express 31, Nr. 8 (30.03.2023): 12433. http://dx.doi.org/10.1364/oe.482859.
Der volle Inhalt der QuelleZhang, Jian-Qi, Jing-Xin Liu, Hui-Lai Zhang, Zhi-Rui Gong, Shuo Zhang, Lei-Lei Yan, Shi-Lei Su, Hui Jing und Mang Feng. „Topological optomechanical amplifier in synthetic PT $\mathcal{PT}$ -symmetry“. Nanophotonics 11, Nr. 6 (02.02.2022): 1149–58. http://dx.doi.org/10.1515/nanoph-2021-0721.
Der volle Inhalt der QuellePiergentili, Paolo, Riccardo Natali, David Vitali und Giovanni Di Giuseppe. „Two-Membrane Cavity Optomechanics: Linear and Non-Linear Dynamics“. Photonics 9, Nr. 2 (08.02.2022): 99. http://dx.doi.org/10.3390/photonics9020099.
Der volle Inhalt der QuelleXia, Ji, Fuyin Wang, Chunyan Cao, Zhengliang Hu, Heng Yang und Shuidong Xiong. „A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing“. Crystals 11, Nr. 5 (21.04.2021): 462. http://dx.doi.org/10.3390/cryst11050462.
Der volle Inhalt der QuelleMaksymowych, M. P., J. N. Westwood-Bachman, A. Venkatasubramanian und W. K. Hiebert. „Optomechanical spring enhanced mass sensing“. Applied Physics Letters 115, Nr. 10 (02.09.2019): 101103. http://dx.doi.org/10.1063/1.5117159.
Der volle Inhalt der QuelleWisniewski, Hayden, Logan Richardson, Adam Hines, Alexandre Laurain und Felipe Guzmán. „Optomechanical lasers for inertial sensing“. Journal of the Optical Society of America A 37, Nr. 9 (12.08.2020): B87. http://dx.doi.org/10.1364/josaa.396774.
Der volle Inhalt der QuelleLiu, Fenfei, und Mani Hossein-Zadeh. „Mass Sensing With Optomechanical Oscillation“. IEEE Sensors Journal 13, Nr. 1 (Januar 2013): 146–47. http://dx.doi.org/10.1109/jsen.2012.2217956.
Der volle Inhalt der QuelleRichardson, Logan, Adam Hines, Andrew Schaffer, Brian P. Anderson und Felipe Guzman. „Quantum hybrid optomechanical inertial sensing“. Applied Optics 59, Nr. 22 (30.06.2020): G160. http://dx.doi.org/10.1364/ao.393060.
Der volle Inhalt der QuelleDeng, Yang, Fenfei Liu, Zayd C. Leseman und Mani Hossein-Zadeh. „Thermo-optomechanical oscillator for sensing applications“. Optics Express 21, Nr. 4 (15.02.2013): 4653. http://dx.doi.org/10.1364/oe.21.004653.
Der volle Inhalt der QuelleDissertationen zum Thema "Optomechanical sensing"
Guha, Biswarup. „Surface-enhanced optomechanical disk resonators and force sensing“. Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC154/document.
Der volle Inhalt der QuelleOptomechanics studies the interaction between light and mechanical motion. This PhD thesis reports on optomechanical experiments carried with miniature disk resonators fabricated out of distinct III-V semiconductors: Gallium Arsenide (GaAs), Aluminium Gallium Arsenide (AlGaAs) and Indium Gallium Phosphide (InGaP). These materials are compliant with optoelectronics functionalities and provide giant optomechanical coupling. In order to boost performances of GaAs resonators, we implemented surface control techniques and obtained a ten-fold reduction of optical dissipation, attaining a Q of six million. On top of GaAs, we performed a comparative investigation of optomechanical interactions in InGaP and AlGaAs disk resonators, and demonstrated their operation as optomechanical oscillators. Finally, we carried out optomechanical force sensing experiments with GaAs resonators, analyzing a new sensing principle in light of the phase space trajectory and phase noise of the corresponding oscillators
Neshasteh, Hamidreza. „Ultra-high frequency optomechanical disk resonators in liquids“. Electronic Thesis or Diss., Université Paris Cité, 2023. http://www.theses.fr/2023UNIP7132.
Der volle Inhalt der QuelleIn this thesis, we present an in-depth study of ultra-high frequency optomechanical disk resonators operating in various liquid environments. The goal of the work was to develop optical experimental techniques and theoretical models to study fluid-structure interactions in micro- and nanoscale vibrating devices, with potential applications in fluidics, biomedical sensing, and materials science. We employed optomechanical transduction techniques on silicon disk resonators to measure various properties of liquids. Backed by analytical and numerical models, our measurements give access to the liquid's refractive index, thermal conductivity, viscosity, density, and compressibility. We notably derived closed-formed expressions for the mechanical frequency shift and quality factor of a disk immersed in liquid, transforming it into a calibrated rheometer. As this rheometer covers the frequency range from 200 MHz to 3 GHz, we observed pronounced compressibility effects in liquid water, and confirmed that this liquid remains Newtonian in this range. In contrast, 1-decanol liquid exhibits a non-Newtonian behavior, with a frequency-dependent viscosity associated with relaxation times that we could reveal experimentally. The thesis work provides insights into the behavior of immersed optomechanical disk resonators and demonstrates their potential to probe the multiphysics properties of a liquid at the micron scale
Dobrindt, Jens. „Bio-sensing using toroidal microresonators & theoretical cavity optomechanics“. Diss., Ludwig-Maximilians-Universität München, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-156427.
Der volle Inhalt der QuelleIn dieser Dissertation werden zwei Themen behandelt. Im ersten Teil widmen wir uns experimentell der zeitaufgelösten Messung von Liposomen mit Hilfe eines Nahfeld-Brechungsindex-Sensors. Der zweite Teil handelt von der theoretischen Beschreibung des Regimes der starken Kopplung zwischen einem mechanischen Oszillator und dem Feld eines optischen Resonators. Des Weiteren erörtern wir ein Messschema, das es erlaubt eine mechanische Bewegung, mit Hilfe von mehreren optischen Resonatormoden genauer auszulesen. Die Gemeinsamkeit beider Arbeiten besteht darin, dass es sich jeweils um eine Präzisionsmessung einer optischen Frequenz handelt. Im experimentellen Teil benutzen wir Toroid-Mikroresonatoren mit extrem hoher optischer Güte als Biosensoren. Dabei handelt es sich um eine ringförmige Glasstruktur, entlang welcher Licht im Kreis geleitet wird. Dazu muss eine Resonanzbedingung erfüllt sein, die besagt, dass der (effektive) Umfang des Rings einem ganzzahligen Vielfachen der optischen Wellenlänge entspricht. Ein Teil des zirkulierenden Lichts ist als evaneszente Welle empfänglich für Brechungsindexänderungen nahe der Oberfläche des Resonators. Ein Partikel, dessen Brechungsindex sich von dem der Umgebung unterscheidet, induziert beim Eintritt in das evaneszente Feld eine Frequenzverschiebung der optischen Resonanz. Im Rahmen dieser Arbeit lösen wir relative Frequenzverschiebungen mit einer Genauigkeit von df/f=7.7e-11 und einer Zeitkonstante von 100µs auf. Dies stellt eine Verbesserung des derzeitigen Stands der Technik um einen Faktor x10 in der Frequenz und einen Faktor x100 in der Zeit dar. Diese bisher unerreichte Empfindlichkeit der Messmethode ist der Schlüssel zur Echtzeitdetektion einzelner Lipidvesikel mit einem Radius von 25nm . Zudem gelingt es uns innerhalb einer Messung, bis zu 200 Einzelteilchenereignisse aufzunehmen, welche die Basis für eine aussagekräftige Statistik liefern. Bemerkenswerterweise konnten wir Dank der außerordentlichen Präzision und der Vielzahl der Ereignisse eine Abweichung zur bis dato akzeptierten und angewandten Theorie feststellen. Wir ergänzen das Model um einen Korrekturfaktor, der die Polarisierbarkeit des Teilchens vollständig berücksichtigt und erlangen dadurch ein umfassendes und quantitatives Verständnis der Messergebnisse. Im Hinblick auf biologisch relevante Fragestellungen zeigen wir eine elegante Methode auf, die es erlaubt, den Resonator mit einer einzelnen Lipidmembran zu beschichten. Wir kreieren somit eine biomimetische Schnittstelle, welche das Grundgerüst für eine spezifische Funktionalisierung mit lipidgebundenen Rezeptoren, Antikörpern oder Membranproteinen darstellt. Des Weiteren zeigen wir, dass der Empfindlichkeit eine fundamentale Grenze durch thermische Brechungsindexfluktuationen gesetzt ist. Hierzu wird ein theoretisches Modell speziell für den relevanten niederfrequenten Bereich errechnet. Im zweiten Teil der Arbeit beschäftigen wir uns mit der theoretischen Beschreibung eines optischen Resonators, dessen Lichtfeld an eine mechanische Schwingung gekoppelt ist. Obwohl sich die Resonanzfrequenzen der Optik und der Mechanik typischerweise um mehrere Größenordnungen unterscheiden, existiert ein Regime der starken Kopplung, in dem die Fluktuationen des Lichts und die mechanischen Vibrationen hybridisieren. Dies offenbart sich zum Beispiel im Phasenspektrum, wo sich das ursprüngliche Maximum der Resonanz in zwei Maxima aufspaltet. Die starke Kopplung stellt die Grundlage für kohärenten Energie- und Informationsaustausch zwischen Licht und Mechanik dar und ist daher von besonderem technischen und wissenschaftlichen Interesse. Es ist anzumerken, dass die starke Kopplung und die einhergehende Aufspaltung der Resonanz bereits kurz nach Veröffentlichung unserer theoretischen Beschreibung im Experiment beobachtet wurde [vgl. Gröblacher et al., Nature 460, 724--727]. Wenn der optische Resonator (zur längeren Wellenlänge hin) verstimmt von der Resonanz angeregt wird, kann über dynamische Rückkopplung eine effektive Kühlung der mechanischen Schwingung erreicht werden. Wir berechnen die thermische Besetzungszahl der mechanischen Mode (und somit die Temperatur) mit Hilfe eines störungstheoretischen und eines Kovarianzansatzes. Dabei berücksichtigen wir sowohl ein klassisches Rauschen des optischen Feldes als auch den Einfluss der optomechanischen Kopplung auf die Grenztemperatur. Der hergeleitete Ausdruck für die finale Besetzungszahl wurde eins zu eins für die Datenanalyse in dem wegweisenden Artikel über das Kühlen eines mechanischen Oszillators in den Quantengrundzustand verwendet [vgl. Teufel et al., Nature 475, 359--363]. Abschließend betrachten wir ein Schema, bei dem die Lichtfelder mehrerer optischer Resonanzen an eine mechanischen Schwingung gekoppelt sind. Die resonante Verstärkung der Information über die mechanische Bewegung in den optischen Seitenbändern ermöglicht es, eine durch das Standard Quantenlimit begrenzte Empfindlichkeit bei signifikant niedriger Eingangsleistung zu erreichen.
GRECO, SILVIO MARIO LUCIANO. „Nanooptomechanical silicon devices for sensing applications“. Doctoral thesis, Università degli Studi di Trieste, 2018. http://hdl.handle.net/11368/2920227.
Der volle Inhalt der QuelleDobrindt, Jens [Verfasser], und Theodor W. [Akademischer Betreuer] Hänsch. „Bio-sensing using toroidal microresonators & theoretical cavity optomechanics / Jens Dobrindt. Betreuer: Theodor W. Hänsch“. München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/1035066599/34.
Der volle Inhalt der QuelleGüell, i. Grau Pau. „Soft Plasmomechanical Metamaterials for Sensing and Actuation“. Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671820.
Der volle Inhalt der QuelleDurante la ultima década, los materiales inteligentes han emergido como una tendencia fascinante en la ciencia de materiales. En éste ámbito, los materiales optomecánicos blandos son especialmente interesantes para desarrollar dispositivos de sensado y actuación innovadores gracias a la naturaleza inalámbrica de los sistemas ópticos y la posibilidad de ser combinada con otros tipos de estimulación. En particular, la inclusión de nanopartículas o nanoestructuras plasmónicas en sustratos poliméricos blandos conlleva posibilidades interesantes, como las características ópticas fáciles de modificar de los materiales plasmónicos y la gran elasticidad y robustez de los materiales blandos. Ésta nueva clase de materiales es referida en esta tesis como a metamateriales plasmomecánicos blandos. Aún así, éste particular campo de estudio es relativamente reciente. Por éste motivo, ésta tesis está dedicada al desarrollo de nuevos metamateriales plasmomecánicos blandos, llevando a cabo el estudio detallado de sus propiedades ópticas y mecánicas y su diseño para el uso en aplicaciones prácticas en el ámbito del sensado y la actuación. Específicamente, las dificultades de implementar absorbentes lumínicos de ancho de banda amplio eficientes en sustratos flexibles o elásticos son abordadas con el desarrollo de un nuevo metamaterial basado en una capa de hierro nanoestructurado sobre una capa fina elastomèrica. Éste nuevo metamaterial combina las resonancias plasmónicas amortiguadas del hierro nanoestructurado con la absorción infrarroja del PDMS para conseguir una absorción independiente del ángulo y con un gran ancho de anda. Ése excepcional comportamiento óptico es explotado para desarrollar diferentes dispositivos foto-termo-mecánicos inalámbricos y innovadores. A través de la explotación de las propiedades magnéticas del hierro, el mismo metamaterial es utilizado para desarrollar un actuador inalámbrico y multi-funcional. Específicamente, el control de la fuerza y dirección de la actuación magnética es combinada con la actuación lumínica, permitiendo condiciones de operación remotas y versátiles. Además, se ha conseguido la incorporación de la funcionalidad de auto-sensado a través de incluir una estructura de malla fotónica en la parte posterior del actuador. La respuesta mecánica del actuador a cualquier estímulo externo se muestra como un cambio de coloración y es cuantificada en tiempo real a través de las imágenes tomadas a través de una cámara convencional. La actuación remota y multi-estímulo del dispositivo, juntamente con las capacidades de auto-sensado establecen las bases para el desarrollo de mecanismos para operaciones en robótica blanda en ambientes inaccesibles o peligrosos. Finalmente, se ha demostrado el desarrollo de la primera cavidad Fabry-Perot estirable y amplificada plasmónicamente para el sensado óptico de esfuerzo. Éste nuevo material consiste en una matriz de “media-cáscara” de oro plasmónico auto-organizadas, las cuales son auto-incrustadas dentro de un sustrato elastomérico arrugado. Ésta morfología da lugar a un comportamiento óptico poco convencional que puede ser ajustado a través delas condiciones de fabricación. El material presenta una respuesta óptica intensa al esfuerzo mecánico, con sensibilidad similar a otras aproximaciones basadas en procesos de fabricación más complejas. Además, presenta gran robustez y deformabilidad, las cuales permiten su aplicación como sensor inalámbrico de esfuerzo en superficies curvas. En resumen, ésta tesis aborda diferentes retos en el desarrollo de materiales inteligentes optomecánicos blandos para diversas plataformas de sensado y actuación.
During the last decade, smart materials have emerged as an exciting trend in materials science. Within this scope, soft optomechanical materials are especially appealing for developing innovative sensing and actuation devices due to the wireless nature of optics and the possibility to be combined with other types of stimuli. In particular, the inclusion of plasmonic nanoparticles or nanostructures into soft polymer substrates entail interesting possibilities, such as the easily-tunable optical features of plasmonic materials and large elasticity and robustness of soft materials. This new class of materials are referred as soft plasmomechanical metamaterials. However, this particular field of study is relatively recent. To that end, this thesis is dedicated to the development of new soft plasmomechanical metamaterials, bringing together the detailed study of their optical and mechanical properties with the design for their use into practical applications within the scope of sensing and actuation. Specifically, the difficulties of implementing efficient broadband light absorbers into flexible or stretchable substrates are tackled by the development of a novel metamaterial based on a nanostructured iron layer on a thin elastomer film. This new metamaterial combines the damped plasmonic resonances of the nanostructured iron with the infrared absorption of PDMS to achieve an unprecedented broadband and angle-independent light absorption in flexible materials. This exceptional optical behaviour, together with a large mismatch on the mechanical properties of both materials are exploited to develop diverse innovative untethered photo-thermo-mechanical devices. By exploiting the magnetic properties of iron, the same metamaterial is then used to develop an untethered, multi-functional actuator. Specifically, the control of the magnetic actuation strength and direction is combined with the broadband light actuation, enabling remote and versatile work operation conditions for soft-robotics applications. In addition, the incorporation of a self-sensing functionality is achieved by including a photonic grating structure at the actuator back-side, which provides structural coloration to the actuator. The mechanical response of the actuator to any external stimuli is displayed as a coloration shift and quantified in real-time by the images taken by a conventional camera. The remote and multi-stimuli actuation of the device, together with its self-sensing capabilities set the foundations for soft robotics operations in inaccessible or hazardous environments. Finally, the development of the first stretchable plasmonic-enhanced Fabry-Perot cavity is demonstrated for optical strain sensing. This new material consists on an array of self-assembled plasmonic gold semi-shells which are self-embedded into a wrinkled elastomer matrix. This peculiar morphology gives rise to unconventional optical behaviour that can be tuned by the manufacturing conditions. The material shows strong optical to mechanical strain, with similar sensitivity to other sensing approaches based in more complex fabrication processes. Furthermore, it shows large robustness and deformability, that enables its application as wireless pressure/strain sensing into curved surfaces. Overall, this thesis tackles different challenges in the development of soft smart optomechanical materials for diverse sensing and actuation platforms.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
De, Carlo Martino. „Integrated optomechanical devices for sensing“. Doctoral thesis, 2021. http://hdl.handle.net/11589/213841.
Der volle Inhalt der QuelleOptomechanics is a developing field of research exploring the interaction between light and mechanical motion. The modern nanofabrication techniques for mechanical devices and ultralow dissipation optical structures have provided a way for giving an important experimental progress to optomechanics, both for applications and for fundamental investigations. In this thesis optomechanics will be investigated in different aspects, in its general meaning, both theoretically and experimentally. There are different ways in which light and mechanics interact with each other. In this thesis three different macro areas of optomechanics have been developed: optical gyroscopes, optomechanical forces and photoacoustic spectroscopy. The interaction between light and mechanical motion has been investigated starting from the concept of optical gyroscopes. Optical gyroscopes are sensors of angular velocity. In the present state of the art, the physical principles and the configurations used for realizing optical gyroscopes are not suitable for miniaturizing them to the microscale. In this thesis some new configurations exploiting the concept of "exceptional points" have been presented and investigated. According to the relativistic effect called Sagnac effect, the resonance frequencies of two counterpropagating modes in a ring resonator are separated by a quantity proportional to the angular velocity of the frame. However, the possibility of miniaturizing the optical gyroscope is limited by the fact that the resonance splitting is proportional to the radius of the ring resonator. In the first chapter the concept of parity-time symmetry has been introduced as a solution for the integration of angular velocity sensors. By setting up two coupled optical resonators designed to be at the so called "exceptional point", it could be demonstrated that the eigenfrequency splitting is proportional to the angular velocity of the device, with a sensitivity that is several orders of magnitude higher than the classical Sagnac gyroscope. In this thesis it has been demonstrated that one problem of the parity-time symmetric gyroscope is the instability of the optical eigenmodes when the system is in rotation. That is why the idea of the anti-parity-time-symmetric gyroscope was proposed, using a U-shaped auxiliary waveguide to indirectly couple two optical resonators. The proposed solution has been shown to be an interesting alternative for angular velocity sensing, thanks to the easy readout scheme and the absence of modes instability. A simple broadband source, together with a photodetector could be used to read the output of the sensor. Finally, a new configuration for an anti-parity-time-symmetric gyroscope has been proposed. It is different from the U-shaped configuration and uses only an auxiliary straight waveguide to indirectly couple two optical resonators. This architecture has been shown to be much more robust, insensitive to some fabrication errors, with respect to the U-shaped one. The second area of optomechanics that has been investigated in this thesis includes optomechanical forces. In particular, a generalized model able to calculate the mechanical displacement of only one degree of freedom of a general optomechanical setup has been developed. The model initially proposed by Rakich has been extended to systems where gain or loss are considered. Then, the model has been used to evaluate the effect of optical forces in parity-time symmetric system with suspended waveguides in the coupling region. It has been demonstrated that it is possible to enhance the optical forces thanks to condition of parity-time symmetry. Secondly, an analytical modelling of the dynamics of optomechanically coupled suspended optical waveguides has been proposed, including a modelling of the damping, with the squeezing effect. Such an analytical model, together with the numerical proposed algorithm can be used to find the evolution of the system in the time domain of complex optomechanical structures, such as optomechanical switches. Also, an experimental work on an optomechanical switch has been shown. All the fabrication steps to fabricate the integrated optomechanical device has been explained. The most critical part during the fabrication has been the underetching of suspended waveguides. In fact, using a wet HF etching process caused the suspended waveguides to get stuck. Using a ZEP mask and a vapor HF etching, unexpected HF bubbles appeared on the surface. So, a hard mask has been used to guarantee the successful underetching of the device. Finally, the experimental measurement on the chip showed the expected behaviour of the device. Finally, Photoacoustic Spectroscopy has been analysed. The state-of-art Quartz-Enhanced PhotoAcoustic Spectroscopy (QEPAS) sensor has been modelled and simulated and a new semi-integrated sensor has been proposed. One problem of the state-of-art QEPAS sensors is the necessity of alignment for optical components. Moreover, the dimension of all the devices involved in the setup makes it difficult to realize portable and compact sensors. The idea proposed in this thesis is to integrate all the optical components needed to guide the light in the proximity of the Quartz Tuning Fork to drastically reduce the dimension of the overall setup and to avoid the problem of optical alignment. The possibility of using integrated optical waveguides to guide light makes it possible to use optical resonators to enhance the photoacoustic signal that is read through a Quartz Tuning Fork. The proposed setup is meant to use an integrated laser bonded to a Silicon chip, where all the waveguides are realized. In this case a very small mechanical resonator can be bonded over the Silicon chip, in order to enhance the amplitude of the pressure signal. In such a way, performance comparable with the state-of-art QEPAS sensor can been achieved. Such a result could pave the way to a new generation of compact QEPAS sensor, that could overcome the problem of the size of the setups and of the alignment of optical components.
Krause, Alexander Grey. „Acceleration Sensing, Feedback Cooling, and Nonlinear Dynamics with Nanoscale Cavity-Optomechanical Devices“. Thesis, 2015. https://thesis.library.caltech.edu/8754/8/AlexKrause_Thesis_2015_final.pdf.
Der volle Inhalt der QuelleLight has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).
In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.
In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.
The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.
Yu, Wenyan. „Cavity optical spring sensing for single molecules“. Thesis, 2017. http://hdl.handle.net/1828/7819.
Der volle Inhalt der QuelleGraduate
Sahu, Sudhir Kumar. „A cavity electromechanical device for superconducting vortex charge sensing“. Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5736.
Der volle Inhalt der QuelleBuchteile zum Thema "Optomechanical sensing"
Yu, Wenyan, Wei C. Jiang, Qiang Lin und Tao Lu. „Optomechanical Sensing“. In Single Molecule Sensing Beyond Fluorescence, 127–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90339-8_4.
Der volle Inhalt der QuelleKamandar Dezfouli, Mohsen, und Stephen Hughes. „Quantum Optical Theories of Molecular Optomechanics“. In Single Molecule Sensing Beyond Fluorescence, 163–204. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90339-8_5.
Der volle Inhalt der QuelleLehnert, Konrad W. „Dynamic and Multimode Electromechanics“. In Quantum Optomechanics and Nanomechanics, 307–28. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198828143.003.0008.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optomechanical sensing"
Xia, Yi, Aman R. Agrawal, Christian M. Pluchar, Quntao Zhuang, Dalziel J. Wilson und Zheshen Zhang. „Entanglement-enhanced Optomechanical Sensing“. In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ff4a.5.
Der volle Inhalt der QuelleChan, Chia-Yen, Ting-Ming Huang und Po-Wen Hwang. „Development of an athermalized optomechanical system of large aperture remote sensing instruments“. In Optomechanical Engineering 2017, herausgegeben von David M. Stubbs und Alson E. Hatheway. SPIE, 2017. http://dx.doi.org/10.1117/12.2273779.
Der volle Inhalt der QuelleSingh, Robinjeet, Stephen Eckel, James A. Fedchak und Thomas P. Purdy. „Optomechanical Pressure and Temperature Sensing“. In Frontiers in Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/fio.2017.jw3a.69.
Der volle Inhalt der QuelleWisniewski, Hayden, Logan Richardson, Alexandre Laurain, Adam Hines und Felipe Guzman. „Optomechanical laser for inertial sensing“. In Advanced Solid State Lasers. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/assl.2020.aw2a.4.
Der volle Inhalt der QuelleLiu, Fenfei, Shoufeng Lan und Mani Hossein-Zadeh. „Mass Sensing with Optomechanical Oscillation“. In CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.jw2a.110.
Der volle Inhalt der QuelleMcQueen, Lauren R., Glen I. Harris, Nathaniel Bawden und Warwick P. Bowen. „Fibre-based Optomechanical Ultrasound Sensing“. In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fth1e.2.
Der volle Inhalt der QuelleHensen, Bas, Niccolò Fiaschi, Andreas Wallucks, Jie Li, Simon Groeblacher, Rodrigo S. Benevides und Thiago P. Alegre. „Optomechanical quantum teleportation“. In Optical and Quantum Sensing and Precision Metrology, herausgegeben von Selim M. Shahriar und Jacob Scheuer. SPIE, 2021. http://dx.doi.org/10.1117/12.2589740.
Der volle Inhalt der QuelleFiore, A., F. Galeotti, T. Liu, M. Petruzzella, I. Seršić Vollenbroek, G. G. Lindgren, F. Pagliano et al. „Integrated optomechanical sensing for semiconductor metrology“. In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.jtu1i.4.
Der volle Inhalt der QuelleDeng, Yang, Fenfei Liu, Zayd C. Leseman und Mani Hossein-Zadeh. „Thermo-optomechanical oscillator for sensing applications“. In CLEO: Applications and Technology. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_at.2013.jtu4a.37.
Der volle Inhalt der QuelleNelson, Andrea Mary-Helen, Adam Hines, Yanqi Zhang und Felipe Guzman. „Optomechanical technologies for broadband inertial sensing“. In Interferometry XXI, herausgegeben von Michael B. North-Morris, Katherine Creath und Rosario Porras-Aguilar. SPIE, 2022. http://dx.doi.org/10.1117/12.2633179.
Der volle Inhalt der Quelle