Zeitschriftenartikel zum Thema „Optoelectronic devices“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Optoelectronic devices.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Optoelectronic devices" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Miroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin und Regina M. Islamova. „Silicone Materials for Flexible Optoelectronic Devices“. Materials 15, Nr. 24 (07.12.2022): 8731. http://dx.doi.org/10.3390/ma15248731.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Polysiloxanes and materials based on them (silicone materials) are of great interest in optoelectronics due to their high flexibility, good film-forming ability, and optical transparency. According to the literature, polysiloxanes are suggested to be very promising in the field of optoelectronics and could be employed in the composition of liquid crystal devices, computer memory drives organic light emitting diodes (OLED), and organic photovoltaic devices, including dye synthesized solar cells (DSSC). Polysiloxanes are also a promising material for novel optoectronic devices, such as LEDs based on arrays of III–V nanowires (NWs). In this review, we analyze the currently existing types of silicone materials and their main properties, which are used in optoelectronic device development.
2

Kausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa und Patrizia Bocchetta. „Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology“. Journal of Composites Science 6, Nr. 12 (16.12.2022): 393. http://dx.doi.org/10.3390/jcs6120393.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Optoelectronic devices have been developed using the polymer/fullerene nanocomposite, as focused in this review. The polymer/fullerene nanocomposite shows significant structural, electronics, optical, and useful physical properties in optoelectronics. Non-conducting and conducting polymeric nanocomposites have been applied in optoelectronics, such as light-emitting diodes, solar cells, and sensors. Inclusion of fullerene has further broadened the methodological application of the polymer/fullerene nanocomposite. The polymeric matrices and fullerene may have covalent or physical interactions for charge or electron transportation and superior optical features. Green systems have also been explored in optoelectronic devices; however, due to limited efforts, further design innovations are desirable in green optoelectronics. Nevertheless, the advantages and challenges of the green polymer/fullerene nanocomposite in optoelectronic devices yet need to be explored.
3

Alles, M. A., S. M. Kovalev und S. V. Sokolov. „Optoelectronic Defuzzification Devices“. Физические основы приборостроения 1, Nr. 3 (15.09.2012): 83–91. http://dx.doi.org/10.25210/jfop-1203-083091.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bhattacharya, Pallab, und Lily Y. Pang. „Semiconductor Optoelectronic Devices“. Physics Today 47, Nr. 12 (Dezember 1994): 64. http://dx.doi.org/10.1063/1.2808754.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Osten, W. „Advanced Optoelectronic Devices“. Optics & Laser Technology 31, Nr. 8 (November 1999): 613–14. http://dx.doi.org/10.1016/s0030-3992(00)00008-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jerrard, H. G. „Picosecond optoelectronic devices“. Optics & Laser Technology 18, Nr. 2 (April 1986): 105. http://dx.doi.org/10.1016/0030-3992(86)90049-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chapman, David. „Optoelectronic semiconductor devices“. Microelectronics Journal 25, Nr. 8 (November 1994): 769. http://dx.doi.org/10.1016/0026-2692(94)90143-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Djuris˘Ić, A. B., und W. K. Chan. „Organic Optoelectronic Devices“. HKIE Transactions 11, Nr. 2 (Januar 2004): 44–52. http://dx.doi.org/10.1080/1023697x.2004.10667955.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sang, Xianhe, Yongfu Wang, Qinglin Wang, Liangrui Zou, Shunhao Ge, Yu Yao, Xueting Wang, Jianchao Fan und Dandan Sang. „A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction“. Molecules 28, Nr. 3 (30.01.2023): 1334. http://dx.doi.org/10.3390/molecules28031334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Diamond holds promise for optoelectronic devices working in high-frequency, high-power and high-temperature environments, for example in some aspect of nuclear energetics industry processing and aerospace due to its wide bandgap (5.5 eV), ultimate thermal conductivity, high-pressure resistance, high radio frequency and high chemical stability. In the last several years, p-type B-doped diamond (BDD) has been fabricated to heterojunctions with all kinds of non-metal oxide (AlN, GaN, Si and carbon-based semiconductors) to form heterojunctions, which may be widely utilized in various optoelectronic device technology. This article discusses the application of diamond-based heterostructures and mainly writes about optoelectronic device fabrication, optoelectronic performance research, LEDs, photodetectors, and high-electron mobility transistor (HEMT) device applications based on diamond non-metal oxide (AlN, GaN, Si and carbon-based semiconductor) heterojunction. The discussion in this paper will provide a new scheme for the improvement of high-temperature diamond-based optoelectronics.
10

Vazhdaev, Konstantin, Marat Urakseev, Azamat Allaberdin und Kostantin Subkhankulov. „OPTOELECTRONIC DEVICES BASED ON DIFFRACTION GRATINGS FROM STANDING ELASTIC WAVES“. Electrical and data processing facilities and systems 18, Nr. 3-4 (2022): 151–58. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-151-158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Relevance Currently, optoelectronic devices based on diffraction gratings from standing elastic waves are widely used. This is due to the fact that such devices are small in size, allow realtime measurements and have high accuracy, speed and reliability. A review of foreign patents and scientific and technical literature shows that in Japan, the USA, Germany and other countries, intensive work has been carried out in recent years to create optoelectronic devices as part of information-measuring systems based on the use of diffraction gratings from standing elastic waves. Such work is also carried out in Russia. Today, optoelectronic devices are widely used in various fields of industry, medicine, ecology, etc. Aim of research It is necessary to investigate the prospects of research on the development of optoelectronic devices based on diffraction gratings from standing elastic waves. It is necessary to consider the physics of processes in the field of acousto-optic interactions. It is important to give the main characteristics and possible applications of optoelectronic devices based on diffraction gratings from standing elastic waves. Research objects Light and sound waves interacting with each other when they pass through the same medium, diffraction grating, optoelectronic device. Research methods Mathematical methods of calculation and analysis. Results The need for research in the field of optoelectronic devices based on diffraction gratings from standing elastic waves is formulated. It is shown that when passing through the same medium, light and sound waves interact with each other. Light is scattered on a sound wave, as on a diffraction grating. Recommendations for the design of optoelectronic devices based on diffraction gratings from standing elastic waves are proposed. Possible areas of application of optoelectronic devices based on diffraction gratings from standing elastic waves are considered. Keywords: acousto-optics, waves, modulator, diffraction grating, optoelectronic device
11

Lugli, Paolo, Fabio Compagnone, Aldo Di Carlo und Andrea Reale. „Simulation of Optoelectronic Devices“. VLSI Design 13, Nr. 1-4 (01.01.2001): 23–36. http://dx.doi.org/10.1155/2001/19585.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In the spirit of reviewing various approaches to the modeling and simulation of optoelectronic devices, we discuss two specific examples, related respectively to Semiconductor Optical Amplifiers and to Quantum Cascade Lasers. In the former case, a tight-binding analysis is performed aimed at the optimization of the polarization independence of the device. Further, a rate-equation model is set up to describe the dynamics of gain recovery after optical pumping. A Monte Carlo simulation of a superlattice quantum cascade laser is then presented which provides an insight into the microscopic processes controlling the performance of this device.
12

MILLER, D. A. B. „QUANTUM WELL OPTOELECTRONIC SWITCHING DEVICES“. International Journal of High Speed Electronics and Systems 01, Nr. 01 (März 1990): 19–46. http://dx.doi.org/10.1142/s0129156490000034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Quantum well semiconductor structures allow small, fast, efficient optoelectronic devices such as optical modulators and switches. These are capable of logic themselves and have good potential for integration with electronic integrated circuits for parallel high speed interconnections. Devices can be made both in waveguides and two-dimensional parallel arrays. Working arrays of optical logic and memory devices have been demonstrated, to sizes as large as 2 048 elements, all externally accessible in parallel with free-space optics. This article gives an overview of the physics underlying the operation of such devices, and describes the principles of several of the device types, including self-electrooptic effect devices (SEEDs).
13

Wu, Jieyun, Qing Li, Wen Wang und Kaixin Chen. „Optoelectronic Properties and Structural Modification of Conjugated Polymers Based on Benzodithiophene Groups“. Mini-Reviews in Organic Chemistry 16, Nr. 3 (25.01.2019): 253–60. http://dx.doi.org/10.2174/1570193x15666180406144851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Organic conjugated materials have shown attractive applications due to their good optoelectronic properties, which enable them solution processing techniques in organic optoelectronic devices. Many conjugated materials have been investigated in polymer solar cells and organic field-effect transistors. Among those conjugated materials, Benzo[1,2-b:4,5-b′]dithiophene (BDT) is one of the most employed fused-ring building groups for the synthesis of conjugated materials. The symmetric and planar conjugated structure, tight and regular stacking of BDT can be expected to exhibit the excellent carrier transfer for optoelectronics. In this review, we summarize the recent progress of BDT-based conjugated polymers in optoelectronic devices. BDT-based conjugated materials are classified into onedimensional (1D) and two-dimensional (2D) BDT-based conjugated polymers. Firstly, we introduce the fundamental information of BDT-based conjugated materials and their application in optoelectronic devices. Secondly, the design and synthesis of alkyl, alkoxy and aryl-substituted BDT-based conjugated polymers are discussed, which enables the construction of one-dimensional and two-dimensional BDTbased conjugated system. In the third part, the structure modification, energy level tuning and morphology control and their influences on optoelectronic properties are discussed in detail to reveal the structure- property relationship. Overall, we hope this review can be a good reference for the molecular design of BDT-based semiconductor materials in optoelectronic devices.
14

Ma, Qijie, Guanghui Ren, Arnan Mitchell und Jian Zhen Ou. „Recent advances on hybrid integration of 2D materials on integrated optics platforms“. Nanophotonics 9, Nr. 8 (17.04.2020): 2191–214. http://dx.doi.org/10.1515/nanoph-2019-0565.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractThe burgeoning research into two-dimensional (2D) materials opens a door to novel photonic and optoelectronic devices utilizing their fascinating electronic and photonic properties in thin-layered architectures. The hybrid integration of 2D materials onto integrated optics platforms thus becomes a potential solution to tackle the bottlenecks of traditional optoelectronic devices. In this paper, we present the recent advances of hybrid integration of a wide range of 2D materials on integrated optics platforms for developing high-performance photodetectors, modulators, lasers, and nonlinear optics. Such hybrid integration enables fully functional on-chip devices to be readily accessible researchers and technology developers, becoming a potential candidate for next-generation photonics and optoelectronics industries.
15

Li, Ziwei, Boyi Xu, Delang Liang und Anlian Pan. „Polarization-Dependent Optical Properties and Optoelectronic Devices of 2D Materials“. Research 2020 (29.08.2020): 1–35. http://dx.doi.org/10.34133/2020/5464258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The development of optoelectronic devices requires breakthroughs in new material systems and novel device mechanisms, and the demand recently changes from the detection of signal intensity and responsivity to the exploration of sensitivity of polarized state information. Two-dimensional (2D) materials are a rich family exhibiting diverse physical and electronic properties for polarization device applications, including anisotropic materials, valleytronic materials, and other hybrid heterostructures. In this review, we first review the polarized-light-dependent physical mechanism in 2D materials, then present detailed descriptions in optical and optoelectronic properties, involving Raman shift, optical absorption, and light emission and functional optoelectronic devices. Finally, a comment is made on future developments and challenges. The plethora of 2D materials and their heterostructures offers the promise of polarization-dependent scientific discovery and optoelectronic device application.
16

Liu, Zhixiong, und Husam N. Alshareef. „MXenes for Optoelectronic Devices“. Advanced Electronic Materials 7, Nr. 9 (08.07.2021): 2100295. http://dx.doi.org/10.1002/aelm.202100295.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Chuang, Shun Lien, Nasser Peyghambarian und Stephan Koch. „Physics of Optoelectronic Devices“. Physics Today 49, Nr. 7 (Juli 1996): 62. http://dx.doi.org/10.1063/1.2807693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Demming, Anna, Mark Brongersma und Dai Sik Kim. „Plasmonics in optoelectronic devices“. Nanotechnology 23, Nr. 44 (18.10.2012): 440201. http://dx.doi.org/10.1088/0957-4484/23/44/440201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Cai, Yuanjing, Anjun Qin und Ben Zhong Tang. „Siloles in optoelectronic devices“. Journal of Materials Chemistry C 5, Nr. 30 (2017): 7375–89. http://dx.doi.org/10.1039/c7tc02511d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bouscher, Shlomi, Dmitry Panna und Alex Hayat. „Semiconductor–superconductor optoelectronic devices“. Journal of Optics 19, Nr. 10 (20.09.2017): 103003. http://dx.doi.org/10.1088/2040-8986/aa8888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bhattacharya, Pallab, und Zetian Mi. „Quantum-Dot Optoelectronic Devices“. Proceedings of the IEEE 95, Nr. 9 (September 2007): 1723–40. http://dx.doi.org/10.1109/jproc.2007.900897.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Goldstein, L. „Optoelectronic devices by GSMBE“. Journal of Crystal Growth 105, Nr. 1-4 (Oktober 1990): 93–96. http://dx.doi.org/10.1016/0022-0248(90)90344-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Liang, Zhiqiang, Jun Sun, Yueyue Jiang, Lin Jiang und Xiaodong Chen. „Plasmonic Enhanced Optoelectronic Devices“. Plasmonics 9, Nr. 4 (14.02.2014): 859–66. http://dx.doi.org/10.1007/s11468-014-9682-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Star, Alexander, Yu Lu, Keith Bradley und George Grüner. „Nanotube Optoelectronic Memory Devices“. Nano Letters 4, Nr. 9 (September 2004): 1587–91. http://dx.doi.org/10.1021/nl049337f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Henini, M. „Physics of optoelectronic devices“. Microelectronics Journal 28, Nr. 1 (Januar 1997): 101–2. http://dx.doi.org/10.1016/s0026-2692(97)87853-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Henini, Mohamed. „Optoelectronic materials and devices“. Microelectronics Journal 25, Nr. 8 (November 1994): 607–8. http://dx.doi.org/10.1016/0026-2692(94)90126-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Ho, P. K. „All-Polymer Optoelectronic Devices“. Science 285, Nr. 5425 (09.07.1999): 233–36. http://dx.doi.org/10.1126/science.285.5425.233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Tomas, R. „Physics of optoelectronic devices“. Optics and Lasers in Engineering 26, Nr. 1 (Januar 1997): 72. http://dx.doi.org/10.1016/0143-8166(96)81156-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Hövel, S., N. C. Gerhardt, M. R. Hofmann, F. Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, H. Wende und W. Keune. „Spin-controlled optoelectronic devices“. physica status solidi (c) 6, Nr. 2 (Februar 2009): 436–39. http://dx.doi.org/10.1002/pssc.200880357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Shan, Xuanyu, Chenyi Zhao, Ya Lin, Jilin Liu, Xiaohan Zhang, Ye Tao, Chunliang Wang et al. „Optoelectronic synaptic device based on ZnO/HfOx heterojunction for high-performance neuromorphic vision system“. Applied Physics Letters 121, Nr. 26 (26.12.2022): 263501. http://dx.doi.org/10.1063/5.0129642.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Optoelectronic synapses are considered to be important cornerstones in the construction of neuromorphic computing systems because of their low power consumption, high operating speeds, and high scalability. In this work, we demonstrate an optoelectronic synaptic device based on a ZnO/HfOx heterojunction in which optical potentiation/electrical depression behaviors and nonvolatile high current state can be implemented. The heterojunction device exhibits conductance evolution with high linearity. The excellent optoelectronic memristive behavior of the device can be attributed to the interface barrier between ZnO and HfOx, which hinders the recombination of photo-excited electron–hole pairs to increase the carrier lifetime, and realizes the nonvolatile high current state. More importantly, the artificial vision system based on optoelectronic synaptic devices can achieved a high recognition accuracy of 96.1%. Our work provides a feasible pathway toward the development of optoelectronic synaptic devices for use in high-performance neuromorphic vision systems.
31

Zhuo, Linqing, Dongquan Li, Weidong Chen, Yu Zhang, Wang Zhang, Ziqi Lin, Huadan Zheng et al. „High performance multifunction-in-one optoelectronic device by integrating graphene/MoS2 heterostructures on side-polished fiber“. Nanophotonics 11, Nr. 6 (02.02.2022): 1137–47. http://dx.doi.org/10.1515/nanoph-2021-0688.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Two-dimensional (2D) materials exhibit fascinating and outstanding optoelectronic properties, laying the foundation for the development of novel optoelectronic devices. However, ultra-weak light absorption of 2D materials limits the performance of the optoelectronic devices. Here, a structure of MoS2/graphene/Au integrated onto the side-polished fiber (SPF) is proposed to achieve a high-performance fiber-integrated multifunction-in-one optoelectronic device. It is found that the device can absorb the transverse magnetic (TM) mode guided in the SPF and generate photocurrents as a polarization-sensitive photodetector, while the transverse electric (TE) mode passes with low loss through the device, making the device simultaneously a polarizer. In the device, the MoS2 film and the Au finger electrode can enhance the TM absorption by 1.75 times and 24.8 times, respectively, thus allowing to achieve high performance: a high photoresponsivity of 2.2 × 105 A/W at 1550 nm; the external quantum efficiency (EQE) of 1.76 × 107%; a high photocurrent polarization ratio of 0.686 and a polarization efficiency of 3.9 dB/mm at C-band. The integration of 2D materials on SPF paves the way to enhance the light–2D material interaction and achieve high performance multifunction-in-one fiber-integrated optoelectronic devices.
32

Gorham, D. „Amorphous and microcrystalline semiconductor devices: Optoelectronic devices“. Microelectronics Journal 24, Nr. 7 (November 1993): 733. http://dx.doi.org/10.1016/0026-2692(93)90016-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Tang, Hongyu, und Giulia Tagliabue. „Tunable photoconductive devices based on graphene/WSe2 heterostructures“. EPJ Web of Conferences 266 (2022): 09010. http://dx.doi.org/10.1051/epjconf/202226609010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Optoelectronic tunability in van der Waals heterostructures is essential for their optoelectronic applications. In this work, tunable photoconductive properties were investigated in the heterostructures of WSe2 and monolayer graphene with different stacking orders on SiO2/Si substrates. Here, we demonstrated the effect of the material thickness of WSe2 and graphene on the interfacial charge transport, light absorption, and photoresponses. The results showed that the WSe2/graphene heterostructure exhibited positive photoconductivity after photoexcitation, while negative photoconductivity was observed in the graphene/WSe2 heterostructures. The tunable photoconductive behaviors provide promising potential applications of van der Waals heterostructures in optoelectronics. This work has guiding significance for the realization of stacking engineering in van der Waals heterostructures.
34

Sakurai, Makoto, Ke Wei Liu, Romain Ceolato und Masakazu Aono. „Optical Properties of ZnO Nanowires Decorated with Au Nanoparticles“. Key Engineering Materials 547 (April 2013): 7–10. http://dx.doi.org/10.4028/www.scientific.net/kem.547.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
One of the key technologies in future optoelectronics is control of excitons in oxide materials by the coupling with plasmons on noble metal surfaces. Optical properties of ZnO nanowires decorated with Au nanoparticles were studied to understand fundamental mechanism of the coupling and to develop optoelectronic devices with new functionalities. Light intensity at the main peak position in the photoluminescence (PL) spectra of ZnO nanowires was enhanced with the coverage of Au nanoparticles. Lifetime of excitons excited optically decreased by the decoration of Au nanoparticles. Understanding of the coupling between excitons and plasmons leads to optical control of excitons and will pave the way for new type of optoelectronic devices.
35

ابراهيم السنوسي نصر و احمد ابوسيف عبد الرحمن. „Interactive Learning Material for Optoelectronic Devices using MATLAB-based GUI“. Journal of Pure & Applied Sciences 19, Nr. 2 (18.11.2020): 141–47. http://dx.doi.org/10.51984/jopas.v19i2.878.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Optoelectronic devices have been a difficult subject to grasp for many university students who undertake electronic engineering. Many students find it difficult to understand the operation principle of the optoelectronic devices, for instance, how a solar cell device converts solar energy into electric energy or electricity, or the difference between types of semiconductor devices in terms of interaction between photons and electrons. Thus, the purpose of this paper is to design and implement an interactive and animated software package to aid students in understanding the concepts of the following optoelectronic devices: solar cell, p-n junction photodiode, p-i-n photodiode, light emitting diode and semiconductor laser. The software package was designed to be user friendly and easy to use requiring minimum learning time. The implementation of the software package was achieved using the MATLAB program which is an interactive software package for scientific and engineering numeric computation. The outcome is a series of MATLAB programs that can be used to help students learn the concepts of optoelectronic devices.
36

Parkhomenko, Hryhorii P., Erik O. Shalenov, Zarina Umatova, Karlygash N. Dzhumagulova und Askhat N. Jumabekov. „Fabrication of Flexible Quasi-Interdigitated Back-Contact Perovskite Solar Cells“. Energies 15, Nr. 9 (21.04.2022): 3056. http://dx.doi.org/10.3390/en15093056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Perovskites are a promising class of semiconductor materials, which are being studied intensively for their applications in emerging new flexible optoelectronic devices. In this paper, device manufacturing and characterization of quasi-interdigitated back-contact perovskite solar cells fabricated on flexible substrates are studied. The photovoltaic parameters of the prepared flexible quasi-interdigitated back-contact perovskite solar cells (FQIBC PSCs) are obtained for the front- and rear-side illumination options. The dependences of the device’s open-circuit potential and short-circuit current on the illumination intensity are investigated to determine the main recombination pathways in the devices. Spectral response analysis of the devices demonstrates that the optical transmission losses can be minimized when FQIBC PSCs are illuminated from the front-side. Optoelectronic simulations are used to rationalize the experimental results. It is determined that the obtained FQIBC PSCs have high surface recombination losses, which hinder the device performance. The findings demonstrate a process for the fabrication of flexible back-contact PSCs and provide some directions for device performance improvements.
37

Niu, Pingjuan, Li Pei, Yunhui Mei, Hua Bai und Jia Shi. „Optoelectronic Materials, Devices, and Applications“. Applied Sciences 13, Nr. 13 (25.06.2023): 7514. http://dx.doi.org/10.3390/app13137514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This Special Issue entitled “Optoelectronic Materials, Devices, and Applications” is devoted to gathering a broad array of research papers on the latest advances in the development of optoelectronic materials and devices of semiconductors, fiber optics, power electronics, microwaves, and terahertz [...]
38

Miao, Sijia, Tianle Liu, Yujian Du, Xinyi Zhou, Jingnan Gao, Yichu Xie, Fengyi Shen, Yihua Liu und Yuljae Cho. „2D Material and Perovskite Heterostructure for Optoelectronic Applications“. Nanomaterials 12, Nr. 12 (18.06.2022): 2100. http://dx.doi.org/10.3390/nano12122100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Optoelectronic devices are key building blocks for sustainable energy, imaging applications, and optical communications in modern society. Two-dimensional materials and perovskites have been considered promising candidates in this research area due to their fascinating material properties. Despite the significant progress achieved in the past decades, challenges still remain to further improve the performance of devices based on 2D materials or perovskites and to solve stability issues for their reliability. Recently, a novel concept of 2D material/perovskite heterostructure has demonstrated remarkable achievements by taking advantage of both materials. The diverse fabrication techniques and large families of 2D materials and perovskites open up great opportunities for structure modification, interface engineering, and composition tuning in state-of-the-art optoelectronics. In this review, we present comprehensive information on the synthesis methods, material properties of 2D materials and perovskites, and the research progress of optoelectronic devices, particularly solar cells and photodetectors which are based on 2D materials, perovskites, and 2D material/perovskite heterostructures with future perspectives.
39

Lu, Yangbin, Kang Qu, Tao Zhang, Qingquan He und Jun Pan. „Metal Halide Perovskite Nanowires: Controllable Synthesis, Mechanism, and Application in Optoelectronic Devices“. Nanomaterials 13, Nr. 3 (19.01.2023): 419. http://dx.doi.org/10.3390/nano13030419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Metal halide perovskites are promising energy materials because of their high absorption coefficients, long carrier lifetimes, strong photoluminescence, and low cost. Low-dimensional halide perovskites, especially one-dimensional (1D) halide perovskite nanowires (NWs), have become a hot research topic in optoelectronics owing to their excellent optoelectronic properties. Herein, we review the synthetic strategies and mechanisms of halide perovskite NWs in recent years, such as hot injection, vapor phase growth, selfassembly, and solvothermal synthesis. Furthermore, we summarize their applications in optoelectronics, including lasers, photodetectors, and solar cells. Finally, we propose possible perspectives for the development of halide perovskite NWs.
40

Wada, Osamu. „Progress in Femtosecond Optoelectronic Devices“. Review of Laser Engineering 28, Supplement (2000): 168–69. http://dx.doi.org/10.2184/lsj.28.supplement_168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Houlihan, Francis, Madan Kunnavakham, Alex Liddle, Peter Mirau, Om Nalamasu und John Rogers. „Microlens Arrays for Optoelectronic Devices.“ Journal of Photopolymer Science and Technology 15, Nr. 3 (2002): 497–515. http://dx.doi.org/10.2494/photopolymer.15.497.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Esfandyarpour, Majid, Erik C. Garnett, Yi Cui, Michael D. McGehee und Mark L. Brongersma. „Metamaterial mirrors in optoelectronic devices“. Nature Nanotechnology 9, Nr. 7 (22.06.2014): 542–47. http://dx.doi.org/10.1038/nnano.2014.117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Adams, A. R., D. J. Dunstan und E. P. O'Reilly. „Strained Layers for Optoelectronic Devices“. Physica Scripta T39 (01.01.1991): 196–203. http://dx.doi.org/10.1088/0031-8949/1991/t39/030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

ZHU, Ninghua, Yue HAO und Ming LI. „Optoelectronic devices and integration technologies“. SCIENTIA SINICA Informationis 46, Nr. 8 (01.08.2016): 1156–74. http://dx.doi.org/10.1360/n112016-00059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Yin, Lei, Xiaodong Pi und Deren Yang. „Silicon-based optoelectronic synaptic devices“. Chinese Physics B 29, Nr. 7 (Juli 2020): 070703. http://dx.doi.org/10.1088/1674-1056/ab973f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Li, Yat, Fang Qian, Jie Xiang und Charles M. Lieber. „Nanowire electronic and optoelectronic devices“. Materials Today 9, Nr. 10 (Oktober 2006): 18–27. http://dx.doi.org/10.1016/s1369-7021(06)71650-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Johnston, A. H. „Radiation Effects in Optoelectronic Devices“. IEEE Transactions on Nuclear Science 60, Nr. 3 (Juni 2013): 2054–73. http://dx.doi.org/10.1109/tns.2013.2259504.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Pautrat, J. L., E. Hadji, J. Bleuse und N. Magnea. „Resonant-cavity infrared optoelectronic devices“. Journal of Electronic Materials 26, Nr. 6 (Juni 1997): 667–72. http://dx.doi.org/10.1007/s11664-997-0213-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Ghergia, Vittorio. „New materials for optoelectronic devices“. Ceramics International 19, Nr. 3 (Januar 1993): 181–90. http://dx.doi.org/10.1016/0272-8842(93)90039-t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Chen, Lijue, Anni Feng, Maoning Wang, Junyang Liu, Wenjing Hong, Xuefeng Guo und Dong Xiang. „Towards single-molecule optoelectronic devices“. Science China Chemistry 61, Nr. 11 (21.09.2018): 1368–84. http://dx.doi.org/10.1007/s11426-018-9356-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie