Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optique relativiste“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optique relativiste" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optique relativiste"
Alarcon, W. „De Devereux à Nathan : une lecture ethnopsychiatrique de la schizophrénie“. European Psychiatry 30, S2 (November 2015): S93. http://dx.doi.org/10.1016/j.eurpsy.2015.09.397.
Der volle Inhalt der QuelleAntoine, Jean-Pierre. „Symétries en physique“. Revue des questions scientifiques 190, Nr. 1-2 (01.01.2019): 7–26. http://dx.doi.org/10.14428/qs.v190i1-2.69423.
Der volle Inhalt der QuelleJaccard, Jean-Philippe. „Voir – connaître : Optique, représentation, voyance“. Modernités Russes 11, Nr. 1 (2010): 323–44. http://dx.doi.org/10.3406/modru.2010.936.
Der volle Inhalt der QuelleKuramitsu, Yasuhiro, Yosuke Matsumoto und Takanobu Amano. „Nonlinear evolution of the Weibel instability with relativistic laser pulses“. Physics of Plasmas 30, Nr. 3 (März 2023): 032109. http://dx.doi.org/10.1063/5.0138855.
Der volle Inhalt der QuelleMoshkelgosha, M., und R. Sadighi-Bonabi. „Generating the Optimum Self-Focusing in the Relativistic Laser-Plasma Interaction“. IEEE Transactions on Plasma Science 41, Nr. 5 (Mai 2013): 1570–74. http://dx.doi.org/10.1109/tps.2013.2255888.
Der volle Inhalt der QuelleAlhassan, Jibrin A., Augustine A. Ubachukwu, Finbar C. Odo und Chika C. Onuchukwu. „RELATIVISTIC BEAMING EFFECTS AND STRUCTURAL ASYMMETRIES IN HIGHLY ASYMMETRIC DOUBLE RADIO SOURCES“. Revista Mexicana de Astronomía y Astrofísica 55, Nr. 2 (13.09.2019): 151–59. http://dx.doi.org/10.22201/ia.01851101p.2019.55.02.03.
Der volle Inhalt der QuelleJung, D., B. J. Albright, L. Yin, D. C. Gautier, B. Dromey, R. Shah, S. Palaniyappan et al. „Scaling of ion energies in the relativistic-induced transparency regime“. Laser and Particle Beams 33, Nr. 4 (14.10.2015): 695–703. http://dx.doi.org/10.1017/s0263034615000828.
Der volle Inhalt der QuelleXie, B. S., und N. C. Wang. „Optimum Effect of Asymmetric Laser Pulse Shape on Relativistic Laser-Plasma Wake Field“. Physica Scripta 65, Nr. 5 (01.01.2002): 444–46. http://dx.doi.org/10.1238/physica.regular.065a00444.
Der volle Inhalt der Quellede Bruijne, Jos, Hassan Siddiqui, Uwe Lammers, John Hoar, William O'Mullane und Timo Prusti. „Optimising the Gaia scanning law for relativity experiments“. Proceedings of the International Astronomical Union 5, S261 (April 2009): 331–33. http://dx.doi.org/10.1017/s1743921309990597.
Der volle Inhalt der QuelleLi, Wei, und Yong-gui Liu. „Choosing optimum method for the efficient design of a relativistic magnetron with diffraction output“. Journal of Applied Physics 108, Nr. 11 (Dezember 2010): 113303. http://dx.doi.org/10.1063/1.3520219.
Der volle Inhalt der QuelleDissertationen zum Thema "Optique relativiste"
Ouillé, Marie. „Génération d'impulsions laser proches du cycle optique en durée pour l'interaction laser-matière relativiste à haute cadence“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAE007.
Der volle Inhalt der QuelleThis experimental thesis was essentially conducted at Laboratoire d’Optique Appliquée in Palaiseau (France), on a laser system capable of delivering near-single-cycle duration pulses containing a few mJ of energy at 1kHz repetition rate: the Salle Noire 2. This laser is a Titanium:Sapphire double CPA system with a nonlinear filter in between (based on the crossed polarized wave generation effect) for temporal contrast enhancement, followed by a stretched-flexible hollow-core-fiber based post-compression stage. Using this system, we study laser-matter interaction in the relativistic regime at high repetition rate. We can, on one hand, in gas jets, accelerate electrons in the wakefield of the laser up to several MeVs; and on the other hand, by interacting with plasma mirrors, generate high order harmonics which are associated to bright attosecond pulses in the time domain. Despite the technological prowess in these experiments, the properties of the XUV and electron beams thus generated remain scarcely compatible with the main applications downstream. Following up on previous works in Salle Noire 2, the objective of this thesis was to obtain beams with stable properties, which was achieved by making the laser system more stable and reliable, as well as implementing a fast carrier-envelope phase control loop. By varying the carrier-envelope phase of the laser pulses, we could generate XUV continua/isolated attosecond pulses by forming a relativistic-intensity temporal gate at the surface of the plasma mirror, and also produce electron beams exhibiting stable energy and angle of emission, by controlling the electron injection within the plasma accelerator. Additionally, different regimes of interaction with plasma mirrors were experimentally investigated, such as wakefield acceleration of electrons in long plasma density gradients, and the acceleration of protons on the target’s front side (onto which the laser impinges) along the target no rmal direction, in order to measure new observables (electron energy spectra, proton beam divergence) and thus gain deeper insights into the laser-plasma dynamics
Ricci, A. „Développement d'une source laser ultra-brève, stabilisée en phase et à haut contraste, pour l'optique relativiste haute cadence“. Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00841459.
Der volle Inhalt der QuelleFaure, Jérôme. „Accélération de particules par interaction laser-plasma dans le régime relativiste“. Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00404354.
Der volle Inhalt der QuelleRicci, Aurélien José. „Développement d'une source laser ultra-brève, stabilisée en phase et à haut contraste pour l'optique relativiste haute cadence“. Palaiseau, Ecole polytechnique, 2013. http://www.theses.fr/2013EPXX0020.
Der volle Inhalt der QuelleAhoyo, Thierry. „Application de la théorie diachronique au paradoxe des jumeaux : intégration d'un amplificateur optique à base de semiconducteur à un guide d'onde effilé“. Master's thesis, Université Laval, 2004. http://hdl.handle.net/20.500.11794/35380.
Der volle Inhalt der QuelleQuébec Université Laval, Bibliothèque 2019
Hinschberger, Yannick. „Etude théorique des effets relativistes induits par une impulsion lumineuse ultra-rapide dans la matière“. Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00923154.
Der volle Inhalt der QuelleOubrerie, Kosta. „Amélioration de l'efficacité des accélérateurs laser-plasma“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAE002.
Der volle Inhalt der QuelleTo generate high energy electron beams, conventional accelerators use radio frequency waves to accelerate charged particles to relativistic speeds. However, the accelerating electric field produced is limited to a few tens of megavolts per metre, mainly due to a breakdown phenomenon. Very large facilities are therefore needed to reach sufficiently high energies. For example, the Stanford Linear Accelerator (SLAC), which is the world's longest linear accelerator, accelerates electrons up to 50 GeV over a distance of 3.2 km. Laser-Plasma Accelerators can produce electric fields exceeding 100 GV/m, that are about three orders of magnitude larger than those obtained by radiofrequency-cavity accelerators. They could thus allow for a drastic decrease of the size of accelerators for scientific, medical and industrial applications. Yet, several bottlenecks have to be solved before these applications can be really implemented. It is notably necessary to demonstrate the efficient production of high-quality, multi-GeV electron beams at a high-repetition rate.The doctoral project tackles this problem by exploring new methods for increasing the energy of the electron beams thanks to techniques that are compatibles with arbitrarily high laser powers and repetition rates and that can be combined with controlled injection methods. Indeed, high energy or controlled injection electron beams have been obtained separately during the last fifteen years, but never combined. This thesis presents the work carried out on the guiding techniques as well as on the electron injection techniques which allowed to obtain experimentally good quality beams at high energies. This work was done in particular through the optimisation of a new optic designed at the Laboratoire d'Optique Appliquée, the axiparabola, as well as the development of gas jets specific to laser-plasma acceleration
Kaur, Jaismeen. „Development of an intense attosecond source based on relativistic plasma mirrors at high repetition rate“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE007.
Der volle Inhalt der QuelleThe experimental work presented in this manuscript was carried out at Laboratoire d’Optique Appliquée (LOA, Palaiseau, France) on a compact kHz multi-mJ energy laser system capable of delivering waveform-controlled near-single-cycle pulses. The first part of this work is focused on improving the performance of this laser source by integrating a cryogenically-cooled multi-pass amplifier in the laser chain in order to increase the output energy, enhance the laser waveform stability, making the laser source more stable and reliable, and with more overall reproducible day-to-day performance. Furthermore, we explore laser post-compression and temporal contrast enhancement in a multipass cell. In the future, this post-compression scheme when power-scaled and integrated into the laser chain will further enhance the focused pulse intensity for experiments.The second part of this work focuses on using the laser system to drive relativistic plasma mirrors on the surface of initially-solid targets to generate highly energetic particle beams (ions and electrons) and harmonic radiation in the extreme ultraviolet region, corresponding to attosecond pulses (1 as = 10-18 s) in the time domain. We could produce relativistic electron beams by localized injection of electrons into the nonlinearly reflected laser field by the plasma mirror. Additionally, we could generate nearly-collimated MeV-class proton beams in a controlled pump-probe experiment. By stabilizing the waveform of the driving laser pulses, we could temporally gate the interaction process on the target surface and produce isolated attosecond pulses. We performed a comprehensive parameter study to fully characterize and optimize the spatio-spectral properties of the emitted XUV attosecond pulses, laying the groundwork for their refocusing for applications
Santos, Joao Jorge. „Génération et transport des électrons rapides dans l'interaction laser-solide à très haut flux“. Palaiseau, Ecole polytechnique, 2003. http://www.theses.fr/2003EPXX0008.
Der volle Inhalt der QuelleSigal-Pauchard, Marie. „Application de la théorie de l'optimisation à certains problèmes de relativité générale“. Rouen, 1986. http://www.theses.fr/1986ROUES004.
Der volle Inhalt der QuelleBuchteile zum Thema "Optique relativiste"
Peters, Steve, und Karen Stephenson. „Mathematical Description of the Network Field Model“. In Toward a General Theory of Organizing - Volume 1: Introducing the Network Field Model. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.100573.
Der volle Inhalt der QuelleReynolds, P. J., M. Dupuis und W. A. Lester. „Quantum Monte Carlo calculation of the singlet-triplet splitting in methylene“. In Quantum Monte Carlo, 33. Oxford University PressNew York, NY, 2007. http://dx.doi.org/10.1093/oso/9780195310108.003.0034.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optique relativiste"
Rangaraj, G. V. „Relativistic particle as energy source: Optimum speed of the particle for maximum power transfer“. In 2011 1st International Conference on Electrical Energy Systems (ICEES). IEEE, 2011. http://dx.doi.org/10.1109/icees.2011.5725346.
Der volle Inhalt der QuelleFrieden, B. Roy. „Fisher information as the basis for relativistic quantum mechanics“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.thk8.
Der volle Inhalt der QuelleQin, Wei, Zhuang Kang und Youwei Kang. „Free Standing Hybrid Riser Global Parametric Sensitivity Analysis and Optimum Design“. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49606.
Der volle Inhalt der QuelleJiang, Z., J. C. Kieffer, C. Y. Côté, M. Chaker, G. Korn, S. Coe, G. Mourou und O. Peyrusse. „Observation of an optimum condition for the generation of Li-like solid density plasmas with subpicosecond laser“. In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.md2.
Der volle Inhalt der QuelleShkolnikov, P. L., A. Lago und A. E. Kaplan. „Optimal quasi-phase-matching for high-order harmonic generation in gases and plasma“. In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.tua5.
Der volle Inhalt der Quelle