Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optimization algorithms“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optimization algorithms" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optimization algorithms"
Celik, Yuksel, und Erkan Ulker. „An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization“. Scientific World Journal 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/370172.
Der volle Inhalt der QuelleLuan, Yuxuan, Junjiang He, Jingmin Yang, Xiaolong Lan und Geying Yang. „Uniformity-Comprehensive Multiobjective Optimization Evolutionary Algorithm Based on Machine Learning“. International Journal of Intelligent Systems 2023 (10.11.2023): 1–21. http://dx.doi.org/10.1155/2023/1666735.
Der volle Inhalt der QuelleWen, Xiaodong, Xiangdong Liu, Cunhui Yu, Haoning Gao, Jing Wang, Yongji Liang, Jiangli Yu und Yan Bai. „IOOA: A multi-strategy fusion improved Osprey Optimization Algorithm for global optimization“. Electronic Research Archive 32, Nr. 3 (2024): 2033–74. http://dx.doi.org/10.3934/era.2024093.
Der volle Inhalt der QuelleKim, Minsu, Areum Han, Jaewon Lee, Sunghyun Cho, Il Moon und Jonggeol Na. „Comparison of Derivative-Free Optimization: Energy Optimization of Steam Methane Reforming Process“. International Journal of Energy Research 2023 (03.06.2023): 1–20. http://dx.doi.org/10.1155/2023/8868540.
Der volle Inhalt der QuellePriyadarshini, Ishaani. „Dendritic Growth Optimization: A Novel Nature-Inspired Algorithm for Real-World Optimization Problems“. Biomimetics 9, Nr. 3 (21.02.2024): 130. http://dx.doi.org/10.3390/biomimetics9030130.
Der volle Inhalt der QuelleRAO, Xiong, Run DU, Wenming CHENG und Yi YANG. „Modified proportional topology optimization algorithm for multiple optimization problems“. Mechanics 30, Nr. 1 (23.02.2024): 36–45. http://dx.doi.org/10.5755/j02.mech.34367.
Der volle Inhalt der QuelleGireesha. B, Mr, und . „A Literature Survey on Artificial Swarm Intelligence based Optimization Techniques“. International Journal of Engineering & Technology 7, Nr. 4.5 (22.09.2018): 455. http://dx.doi.org/10.14419/ijet.v7i4.5.20205.
Der volle Inhalt der QuelleAcherjee, Bappa, Debanjan Maity und Arunanshu S. Kuar. „Ultrasonic Machining Process Optimization by Cuckoo Search and Chicken Swarm Optimization Algorithms“. International Journal of Applied Metaheuristic Computing 11, Nr. 2 (April 2020): 1–26. http://dx.doi.org/10.4018/ijamc.2020040101.
Der volle Inhalt der QuelleAlfarhisi, Zikrie Pramudia, Hadi Suyono und Fakhriy Hario Partiansyah. „4G LTE Network Coverage Optimization Using Metaheuristic Approach“. International Journal of Computer Applications Technology and Researc 10, Nr. 01 (01.01.2021): 010–13. http://dx.doi.org/10.7753/ijcatr1001.1003.
Der volle Inhalt der QuelleSi, Binghui, Feng Liu und Yanxia Li. „Metamodel-Based Hyperparameter Optimization of Optimization Algorithms in Building Energy Optimization“. Buildings 13, Nr. 1 (09.01.2023): 167. http://dx.doi.org/10.3390/buildings13010167.
Der volle Inhalt der QuelleDissertationen zum Thema "Optimization algorithms"
Astete, morales Sandra. „Contributions to Convergence Analysis of Noisy Optimization Algorithms“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS327/document.
Der volle Inhalt der QuelleThis thesis exposes contributions to the analysis of algorithms for noisy functions. It exposes convergence rates for linesearch algorithms as well as for random search algorithms. We prove in terms of Simple Regret and Cumulative Regret that a Hessian based algorithm can reach the same results as some optimal algorithms in the literature, when parameters are tuned correctly. On the other hand we analyse the convergence order of Evolution Strategies when solving noisy functions. We deduce log-log convergence. We also give a lower bound for the convergence rate of the Evolution Strategies. We extend the work on revaluation by applying it to a discrete settings. Finally we analyse the performance measure itself and prove that the use of an erroneus performance measure can lead to misleading results on the evaluation of different methods
Reimann, Axel. „Evolutionary algorithms and optimization“. Doctoral thesis, [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969093497.
Der volle Inhalt der QuelleParpas, Panayiotis. „Algorithms for stochastic optimization“. Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434980.
Der volle Inhalt der QuelleJohnson, Jared. „Algorithms for Rendering Optimization“. Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5329.
Der volle Inhalt der QuellePh.D.
Doctorate
Computer Science
Engineering and Computer Science
Computer Science
CESARI, TOMMASO RENATO. „ALGORITHMS, LEARNING, AND OPTIMIZATION“. Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/699354.
Der volle Inhalt der QuelleStults, Ian Collier. „A multi-fidelity analysis selection method using a constrained discrete optimization formulation“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31706.
Der volle Inhalt der QuelleCommittee Chair: Mavris, Dimitri; Committee Member: Beeson, Don; Committee Member: Duncan, Scott; Committee Member: German, Brian; Committee Member: Kumar, Viren. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Rafique, Abid. „Communication optimization in iterative numerical algorithms : an algorithm-architecture interaction“. Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/17837.
Der volle Inhalt der QuelleDost, Banu. „Optimization algorithms for biological data“. Diss., [La Jolla] : University of California, San Diego, 2010. http://wwwlib.umi.com/cr/ucsd/fullcit?p3397170.
Der volle Inhalt der QuelleTitle from first page of PDF file (viewed March 23, 2010). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 149-159).
Xiong, Xiaoping. „Stochastic optimization algorithms and convergence /“. College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2360.
Der volle Inhalt der QuelleThesis research directed by: Business and Management. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Quttineh, Nils-Hassan. „Algorithms for Costly Global Optimization“. Licentiate thesis, Mälardalen University, School of Education, Culture and Communication, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5970.
Der volle Inhalt der QuelleThere exists many applications with so-called costly problems, which means that the objective function you want to maximize or minimize cannot be described using standard functions and expressions. Instead one considers these objective functions as ``black box'' where the parameter values are sent in and a function value is returned. This implies in particular that no derivative information is available.The reason for describing these problems as expensive is that it may take a long time to calculate a single function value. The black box could, for example, solve a large system of differential equations or carrying out a heavy simulation, which can take anywhere from several minutes to several hours!These very special conditions therefore requires customized algorithms. Common optimization algorithms are based on calculating function values every now and then, which usually can be done instantly. But with an expensive problem, it may take several hours to compute a single function value. Our main objective is therefore to create algorithms that exploit all available information to the limit before a new function value is calculated. Or in other words, we want to find the optimal solution using as few function evaluations as possible.A good example of real life applications comes from the automotive industry, where on the development of new engines utilize advanced models that are governed by a dozen key parameters. The goal is to optimize the model by changing the parameters in such a way that the engine becomes as energy efficient as possible, but still meets all sorts of demands on strength and external constraints.
Bücher zum Thema "Optimization algorithms"
Spedicato, Emilio, Hrsg. Algorithms for Continuous Optimization. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-009-0369-2.
Der volle Inhalt der QuelleCheng, Shi, und Yuhui Shi, Hrsg. Brain Storm Optimization Algorithms. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15070-9.
Der volle Inhalt der QuelleL, Kreher Donald, Hrsg. Graphs, algorithms, and optimization. Boca Raton: Chapman & Hall/CRC, 2005.
Den vollen Inhalt der Quelle finden1939-, Dennis J. E., und Institute for Computer Applications in Science and Engineering., Hrsg. Algorithms for bilevel optimization. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenHeiko, Rieger, Hrsg. Optimization algorithms in physics. Berlin: Wiley-VCH, 2002.
Den vollen Inhalt der Quelle findenPereira, Ana I., Florbela P. Fernandes, João P. Coelho, João P. Teixeira, Maria F. Pacheco, Paulo Alves und Rui P. Lopes, Hrsg. Optimization, Learning Algorithms and Applications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91885-9.
Der volle Inhalt der QuelleGrötschel, Martin, László Lovász und Alexander Schrijver. Geometric Algorithms and Combinatorial Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78240-4.
Der volle Inhalt der QuelleUryasev, Stanislav, und Panos M. Pardalos, Hrsg. Stochastic Optimization: Algorithms and Applications. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-6594-6.
Der volle Inhalt der QuelleJansen, Klaus, und José Rolim, Hrsg. Approximation Algorithms for Combinatiorial Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0053958.
Der volle Inhalt der QuelleMigdalas, Athanasios, Panos M. Pardalos und Peter Värbrand, Hrsg. Multilevel Optimization: Algorithms and Applications. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4613-0307-7.
Der volle Inhalt der QuelleBuchteile zum Thema "Optimization algorithms"
Löhne, Andreas. „Algorithms“. In Vector Optimization, 161–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18351-5_6.
Der volle Inhalt der QuelleKhamehchi, Ehsan, und Mohammad Reza Mahdiani. „Optimization Algorithms“. In SpringerBriefs in Petroleum Geoscience & Engineering, 35–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51451-2_4.
Der volle Inhalt der QuelleChen, Po, und En-Jui Lee. „Optimization Algorithms“. In Full-3D Seismic Waveform Inversion, 311–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16604-9_5.
Der volle Inhalt der QuelleYang, Xin-She. „Optimization Algorithms“. In Computational Optimization, Methods and Algorithms, 13–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20859-1_2.
Der volle Inhalt der QuelleBuljak, Vladimir. „Optimization Algorithms“. In Computational Fluid and Solid Mechanics, 19–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22703-5_2.
Der volle Inhalt der QuelleDolzhenko, Viktoria. „Optimization Algorithms“. In Algorithmic Trading Systems and Strategies: A New Approach, 215–64. Berkeley, CA: Apress, 2024. http://dx.doi.org/10.1007/979-8-8688-0357-4_6.
Der volle Inhalt der QuelleRong, Hai-Jun, und Zhao-Xu Yang. „Optimization Algorithms“. In Sequential Intelligent Dynamic System Modeling and Control, 29–44. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1541-1_3.
Der volle Inhalt der QuelleStefanov, Stefan M. „The Algorithms“. In Applied Optimization, 159–74. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3417-1_7.
Der volle Inhalt der QuelleVirant, Jernej. „Fuzzy Algorithms“. In Applied Optimization, 65–78. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4673-3_4.
Der volle Inhalt der QuelleStefanov, Stefan M. „The Algorithms“. In Separable Optimization, 149–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78401-0_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optimization algorithms"
Liu, Jihong, und Sen Zeng. „A Survey of Assembly Planning Based on Intelligent Optimization Algorithms“. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49445.
Der volle Inhalt der QuelleMekhilef, Mounib, und Mohamed B. Trabia. „Successive Twinkling Simplex Search Optimization Algorithms“. In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/dac-21132.
Der volle Inhalt der QuelleHamann, Hendrik F. „Optimization Algorithms for Energy-Efficient Data Centers“. In ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73066.
Der volle Inhalt der QuelleMüller, Nils, und Tobias Glasmachers. „Non-local optimization“. In FOGA '21: Foundations of Genetic Algorithms XVI. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3450218.3477307.
Der volle Inhalt der QuelleLadkany, George S., und Mohamed B. Trabia. „Incorporating Twinkling in Genetic Algorithms for Global Optimization“. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49256.
Der volle Inhalt der QuelleKhamisov, O. V. „Optimization with quadratic support functions in nonconvex smooth optimization“. In NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA–2016): Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”. Author(s), 2016. http://dx.doi.org/10.1063/1.4965331.
Der volle Inhalt der QuelleService, Travis C., und Daniel R. Tauritz. „Co-optimization algorithms“. In the 10th annual conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1389095.1389166.
Der volle Inhalt der QuelleCorne, David, und Alan Reynolds. „Evaluating optimization algorithms“. In the 13th annual conference companion. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2001858.2002073.
Der volle Inhalt der QuelleAlexandrov, Natalia, und J. Dennis, Jr. „Algorithms for bilevel optimization“. In 5th Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-4334.
Der volle Inhalt der QuelleMukesh, R., K. Lingadurai und S. Karthick. „Aerodynamic optimization using proficient optimization algorithms“. In 2012 International Conference on Computing, Communication and Applications (ICCCA). IEEE, 2012. http://dx.doi.org/10.1109/iccca.2012.6179183.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Optimization algorithms"
Parekh, Ojas D., Ciaran Ryan-Anderson und Sevag Gharibian. Quantum Optimization and Approximation Algorithms. Office of Scientific and Technical Information (OSTI), Januar 2019. http://dx.doi.org/10.2172/1492737.
Der volle Inhalt der QuelleMifflin, Robert. Rapidly Convergent Algorithms for Nonsmooth Optimization. Fort Belvoir, VA: Defense Technical Information Center, Juli 1988. http://dx.doi.org/10.21236/ada204389.
Der volle Inhalt der QuellePrieto, Francisco J. Sequential Quadratic Programming Algorithms for Optimization. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada212800.
Der volle Inhalt der QuelleMifflin, Robert. Rapidly Convergent Algorithms for Nonsmooth Optimization. Fort Belvoir, VA: Defense Technical Information Center, Juli 1986. http://dx.doi.org/10.21236/ada182531.
Der volle Inhalt der QuelleMifflin, R. Rapidly Convergent Algorithms for Nonsmooth Optimization. Fort Belvoir, VA: Defense Technical Information Center, Juli 1985. http://dx.doi.org/10.21236/ada159168.
Der volle Inhalt der QuelleMifflin, Robert. Rapidly Convergent Algorithms for Nonsmooth Optimization. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1990. http://dx.doi.org/10.21236/ada231110.
Der volle Inhalt der QuellePrieto, F. Sequential quadratic programming algorithms for optimization. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/5325989.
Der volle Inhalt der QuelleApostolatos, A., B. Keith, C. Soriano und R. Rossi. D6.1 Deterministic optimization software. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.018.
Der volle Inhalt der QuellePlotkin, Serge. Research in Graph Algorithms and Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, März 1995. http://dx.doi.org/10.21236/ada292630.
Der volle Inhalt der QuelleNocedal, J. Algorithms and software for large scale optimization. Office of Scientific and Technical Information (OSTI), Mai 1990. http://dx.doi.org/10.2172/5688791.
Der volle Inhalt der Quelle