Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optimisatiion géométrique“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optimisatiion géométrique" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optimisatiion géométrique"
Abbas, Mohamed, Noureddine Said und Boussad Boumeddane. „Optimisation d’un moteur Stirling de type gamma“. Journal of Renewable Energies 13, Nr. 1 (25.10.2023): 1–12. http://dx.doi.org/10.54966/jreen.v13i1.174.
Der volle Inhalt der QuelleBellel, Nadir, und Abla Chaker. „Etude et Optimisation du Réseau de Circulation du Fluide Caloporteur d’un Convertisseur Thermique“. Journal of Renewable Energies 7, Nr. 2 (31.12.2004): 85–94. http://dx.doi.org/10.54966/jreen.v7i2.869.
Der volle Inhalt der QuelleBarkatou, M., und A. Henrot. „Un résultat d'existence en optimisation de forme en utilisant une propriété géométrique de la normale“. ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 105–23. http://dx.doi.org/10.1051/cocv:1997105.
Der volle Inhalt der QuelleCheknane, Ali, Boumediene Benyoucef, Jean-Pierre Charles und Radia Zerdoum. „Optimisation et Conception d'une Grille Collectrice Appliquée aux Photopiles Fonctionnant sous Haute Concentration Solaire“. Journal of Renewable Energies 7, Nr. 2 (31.12.2004): 95–108. http://dx.doi.org/10.54966/jreen.v7i2.870.
Der volle Inhalt der QuelleBelhamel, Maiouf. „Optimisation de la Performance d’un Collecteur Solaire Cylindro – parabolique à Caloduc : Réalisation et Dimensionnement du Caloduc“. Journal of Renewable Energies 2, Nr. 1 (30.06.1999): 39–49. http://dx.doi.org/10.54966/jreen.v2i1.923.
Der volle Inhalt der QuelleSehaqui, Rachid, Meryem Sijelmassi und Jaâfar Khalid Naciri. „Amélioration du transfert thermique par optimisation de la géométrie d'une conduite de révolution“. Mécanique & Industries 6, Nr. 2 (März 2005): 189–93. http://dx.doi.org/10.1051/meca:2005019.
Der volle Inhalt der QuelleDroin, Laurent, Maurice Amram und Vick J. Chvojka. „Optimisation Géométrique de Guides d'Ondes Utilisés comme Filtres Passe-bas pour le Controle des Bruits de Basses Fréquences“. Applied Acoustics 19, Nr. 4 (1986): 285–303. http://dx.doi.org/10.1016/0003-682x(86)90003-4.
Der volle Inhalt der QuelleBouziani, Mourad, und Jacynthe Pouliot. „Optimisation de la mise à jour des bases de données géospatiales Proposition d'une procédure automatisée d'appariement géométrique d'objets linéaires“. Revue internationale de géomatique 18, Nr. 1 (26.03.2008): 113–37. http://dx.doi.org/10.3166/geo.18.113-137.
Der volle Inhalt der QuelleVanbremeersch, Jacques, Pascale Godts, Eugène Constant und Isabelle Valin. „Optimisation théorique et expérimentale des caractéristiques géométriques et électriques du transistor à effet de champ à grille submicronique“. Annales des Télécommunications 45, Nr. 5-6 (Mai 1990): 321–28. http://dx.doi.org/10.1007/bf02995133.
Der volle Inhalt der QuelleBeuf, Aurélien, Florence Raynal, Jean-Noël Gence und Philippe Carrière. „Optimisation du protocole de mélange et de la géométrie d’une chambre d’hybridation de puces à ADN“. La Houille Blanche, Nr. 6 (Dezember 2007): 39–44. http://dx.doi.org/10.1051/lhb:2007080.
Der volle Inhalt der QuelleDissertationen zum Thema "Optimisatiion géométrique"
Tassouli, Siham. „Neurodynamic chance-constrained geometric optimization“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG062.
Der volle Inhalt der QuelleIn many real-world scenarios, decision-makers face uncertainties that can affect the outcomes of their decisions. These uncertainties arise from various sources, such as variability in demand, fluctuating market conditions, or incomplete information about system parameters. Traditional deterministic optimization approaches assume that all parameters are known with certainty, which may not accurately reflect the reality of the problem. Chance-constrained optimization provides a more realistic and robust approach by explicitly accounting for the uncertainty in decision-making. Geometric programming is often misunderstood as a technique exclusively designed for posynomial problems. However, it is a versatile mathematical theory with significant value in addressing a broad range of separable problems. In fact, its true strength lies in its ability to effectively tackle seemingly inseparable problems by leveraging their linear algebraic structure. This general applicability of geometric programming makes it a valuable tool for studying and solving various optimization problems, extending its practical usefulness beyond its initial perception. Recurrent neural networks (RNNs) offer a biologically inspired computational framework with great optimization potential. By emulating the interconnected structure of neurons in the brain, RNNs excel in modeling complex and dynamic systems. This capability allows them to capture temporal dependencies and feedback loops, making them well-suited for optimization scenarios that involve sequential decision-making or iterative processes. Moreover, one of the key advantages of neurodynamic approaches is their hardware implementation feasibility. The primary objective of this thesis is to develop neurodynamic algorithms that are efficient and effective in solving chance-constrained geometric optimization problems. The thesis begins by focusing on chance-constrained geometric programs involving independent random variables. In addition, a specific type of geometric programs known as rectangular programs is also examined in detail. The objective is to understand the characteristics and complexities associated with this subclass of geometric programs. Subsequently, the thesis explores applying copula theory to address chance-constrained geometric programs with dependent random variables. Copula theory provides a mathematical framework for modeling and analyzing the dependence structure between random variables, thereby enhancing the understanding and optimization of these problems. Lastly, the thesis investigates distributionally robust geometric optimization, which considers uncertain distributions of random variables. This approach focuses on developing optimization algorithms that are robust against uncertainty in the underlying probability distributions, ensuring more reliable and stable solutions
Rakotoarisoa, Hery. „Modélisation géométrique et optimisation de structures géologiques 3D“. Lyon 1, 1992. http://www.theses.fr/1992LYO19004.
Der volle Inhalt der QuelleBobenrieth, Cédric. „Modélisation géométrique par croquis“. Thesis, Strasbourg, 2019. https://publication-theses.unistra.fr/public/theses_doctorat/2019/Bobenrieth_Cedric_2019_ED269.pdf.
Der volle Inhalt der QuelleNowadays, 3D modeling is omnipresent, however modern tools for creating 3D models are complex and time consuming. Conversely, the sketch is a natural way to quickly communicate ideas, so a method allowing the automatic reconstruction of 3D objects from a sketch would simplify this process. This method should solve two problems: the computation of the hidden parts of the drawn shape and the determination of the 3D coordinates from the 2D data of the sketch. In this thesis, we present two new approaches that aim to overcome these problems. The first makes use of a priori and a pre-existing database to allow automatic 3D reconstruction of flowers from a single sketch from any angle of view. The second allows the reconstruction of all types of objects, without limitations, using a more informative drawing style and being guided by the user
Menguy, Yann. „Optimisation quadratique et géométrique de problèmes de dosimétrie inverse“. Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00005003.
Der volle Inhalt der QuelleSergent, Philippe. „Optimisation géométrique du contrôle actif dans les gaines de ventilation“. Phd thesis, Ecole Nationale des Ponts et Chaussées, 1996. http://tel.archives-ouvertes.fr/tel-00529385.
Der volle Inhalt der QuelleLedoux, Yann. „Optimisation des procédés d'emboutissage par caractérisation géométrique et essais numériques“. Phd thesis, Chambéry, 2005. http://tel.archives-ouvertes.fr/tel-00419320.
Der volle Inhalt der QuelleSERGENT, PHILIPPE. „Optimisation géométrique du contrôle actif dans les gaines de ventilation“. Marne-la-vallée, ENPC, 1996. http://www.theses.fr/1996ENPC9607.
Der volle Inhalt der QuelleDelgado, Gabriel. „Optimisation des structures composites: Une analyse de sensibilité géométrique et topologique“. Phd thesis, Ecole Polytechnique X, 2014. http://pastel.archives-ouvertes.fr/pastel-01005520.
Der volle Inhalt der QuelleChaigne, Benoît. „Méthodes hiérarchiques pour l'optimisation géométrique de structures rayonnantes“. Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00429366.
Der volle Inhalt der QuelleShindo, Kyo. „Analyse mécanique et optimisation géométrique de la dent restaurée par méthode indirecte“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC003/document.
Der volle Inhalt der QuelleThe rehabilitation of dental function following the fitting of prostheses obtained by cemented ceramic restorations is one of the major challenges of restorative dentistry. It is now well established that the ceramic/composite interface has an important significance for the longevity of the restoration and its observation using X-ray µ-CT enabled us to characterize some types of defects within the cement layer (air voids and debonding). The mechanical analysis of the restored tooth considering those defects exhibits their negative influence on the strength of the assembly. The influence of design parameters has also been studied considering a simplified 2D axisymmetric FE model in order to avoid the morphological diversity of real geometries. Results show that the design of the inner shape of the crown (editable within the CAD/CAM process) is mechanically relevant. A 3D finite element study extending to the periodontal ligament has then been realized in order to approach this problem in a more realistic perspective. Results show high stresses near from the cervical margin of the crown, coinciding with a common clinical failure mode. This 3D model was also used in a additional study allowing us to conclude that the geometrical data used in modern CAD/CAM processes are sufficient to develop a mechanical optimization of the restoration design. A reverse engineering method based on the interpolation of B-Spline surfaces on scanned data acquired during clinic procedures is therefore introduced in order to integrate a patient specific mechanical optimization within the digital chain of CAD/CAM processes
Bücher zum Thema "Optimisatiion géométrique"
Michel, Pierre, Hrsg. Variation et optimisation de formes: Une analyse géométrique. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.
Den vollen Inhalt der Quelle findenGrötschel, Martin. Geometric algorithms and combinatorial optimization. 2. Aufl. Berlin: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenGrötschel, Martin. Geometric algorithms and combinatorial optimization. Berlin: Springer-Verlag, 1988.
Den vollen Inhalt der Quelle findenOptimal transport: Old and new. Berlin: Springer, 2009.
Den vollen Inhalt der Quelle findenHildebrandt, Stefan. Mathematics and optimal form. New York: Scientific American Library, 1985.
Den vollen Inhalt der Quelle findenPierre, Michel, und Antoine Henrot. Variation et optimisation de formes: Une analyse géométrique (Mathématiques et Applications). Springer, 2007.
Den vollen Inhalt der Quelle findenAgrachev, Andrei A., und Yuri Sachkov. Control Theory from the Geometric Viewpoint. Springer, 2013.
Den vollen Inhalt der Quelle findenGamkrelidze, R. V., Andrei A. Agrachev und Yuri Sachkov. Control Theory from the Geometric Viewpoint. Springer, 2010.
Den vollen Inhalt der Quelle findenControl Theory from the Geometric Viewpoint. Springer, 2004.
Den vollen Inhalt der Quelle findenAtkins, P. W. Second Law: Energy, Chaos, and Form. W.H. Freeman & Company, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Optimisatiion géométrique"
„Propriétés géométriques de l’optimum“. In Variation et optimisation de formes, 233–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-37689-5_6.
Der volle Inhalt der Quelle