Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optimal temperature control“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optimal temperature control" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optimal temperature control"
Tian-Yu, Liu, Cao Jia-Hui, Liu Yan-Yan, Gao Tian-Fu und Zheng Zhi-Gang. „Optimal control of temperature feedback control ratchets“. Acta Physica Sinica 70, Nr. 19 (2021): 190501. http://dx.doi.org/10.7498/aps.70.20210517.
Der volle Inhalt der QuelleSchwalbe, Karsten, und Karl Heinz Hoffmann. „Optimal Control of an Endoreversible Solar Power Plant“. Journal of Non-Equilibrium Thermodynamics 43, Nr. 3 (26.07.2018): 255–71. http://dx.doi.org/10.1515/jnet-2018-0021.
Der volle Inhalt der QuelleAgusto, Folashade B. „Optimal Control and Temperature Variations of Malaria Transmission Dynamics“. Complexity 2020 (28.11.2020): 1–32. http://dx.doi.org/10.1155/2020/5056432.
Der volle Inhalt der QuelleKull, Tuule Mall, Martin Thalfeldt und Jarek Kurnitski. „Optimal PI control parameters for accurate underfloor heating temperature control“. E3S Web of Conferences 111 (2019): 01081. http://dx.doi.org/10.1051/e3sconf/201911101081.
Der volle Inhalt der QuellePark, Young-shin, und Dongju Lee. „Optimal PID Control for Temperature Control of Chiller Equipment“. Journal of Society of Korea Industrial and Systems Engineering 45, Nr. 3 (30.09.2022): 131–38. http://dx.doi.org/10.11627/jksie.2022.45.3.131.
Der volle Inhalt der QuelleVeldman, D. W. M., S. A. N. Nouwens, R. H. B. Fey, H. J. Zwart, M. M. J. van de Wal, J. D. B. J. van den Boom und H. Nijmeijer. „Optimal thermal actuation for mirror temperature control“. Computer Methods in Applied Mechanics and Engineering 398 (August 2022): 115212. http://dx.doi.org/10.1016/j.cma.2022.115212.
Der volle Inhalt der QuelleYang, Xing Hua, Ting Rui Liu und Jing Sun. „Optimal PID Control of Heat Exchanger Temperature“. Advanced Materials Research 204-210 (Februar 2011): 21–24. http://dx.doi.org/10.4028/www.scientific.net/amr.204-210.21.
Der volle Inhalt der QuelleVan Henten, E. J., und J. Bontsema. „OPEN-LOOP OPTIMAL TEMPERATURE CONTROL IN GREENHOUSES“. Acta Horticulturae, Nr. 801 (November 2008): 629–36. http://dx.doi.org/10.17660/actahortic.2008.801.72.
Der volle Inhalt der QuelleSHarshenaliev, J. SH, T. P. Samochvalova und IU M. Leschenko. „Optimal control by temperature of stacks polysilicon“. IFAC Proceedings Volumes 37, Nr. 17 (September 2004): 276–79. http://dx.doi.org/10.1016/s1474-6670(17)30827-3.
Der volle Inhalt der QuelleGee, Douglas A., und W. Fred Ramirez. „Optimal temperature control for batch beer fermentation“. Biotechnology and Bioengineering 31, Nr. 3 (20.02.1988): 224–34. http://dx.doi.org/10.1002/bit.260310308.
Der volle Inhalt der QuelleDissertationen zum Thema "Optimal temperature control"
Trapnes, Siri Hofstad. „Optimal Temperature Control of Rooms for Minimum Energy Cost“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemisk prosessteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22416.
Der volle Inhalt der QuelleAmmouri, Kevin. „Deep Reinforcement Learning for Temperature Control in Buildings and Adversarial Attacks“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301052.
Der volle Inhalt der QuelleVentilationssystem i byggnader är energiförbrukande och traditionella metoder som används för byggnadskontroll resulterar i förlust av energisparande. Dessa metoder kan inte ta hänsyn till icke-linjära beroenden i termisk beteenden. Djup förstärkande inlärning (DRL) är en kraftfull metod för att uppnå optimal kontroll i många kontrollmiljöer. DRL använder sig av neurala nätverk för att approximera optimala val som kan tas givet att systemet befinner sig i en viss stadie. Därför är DRL en lovande metod för byggnadskontroll och detta faktumet är markerat av flera studier. Likväl, neurala nätverk i allmänhet är kända för att vara svaga mot adversarial attacker, vilket är små ändringar i inmatningen, som gör att neurala nätverket väljer en åtgärd som är suboptimal. Syftet med denna anvhandling är att undersöka olika strategier för att lösa byggnadskontroll-problemet med DRL genom att använda sig av byggnadssimulatorn IDA ICE. Denna avhandling kommer också att använda konceptet av adversarial machine learning för att attackera agenterna som kontrollerar temperaturen i byggnaden. Det finns två olika sätt att attackera neurala nätverk: (1) Fast Gradient Sign Method, som använder gradienterna av kontrollagentens nätverk för att utföra sin attack; (2) träna en inlärningsagent med DRL med målet att minimera kontrollagenternas prestanda. Först byggde vi en DRL-arkitektur som lärde sig kontrollera temperaturen i en byggad. Experimenten visar att utforskning av agenten är en grundläggande faktor för träningen av kontrollagenten och man måste finjustera utforskningen av agenten för att nå tillfredsställande prestanda. Slutligen testade vi känsligheten av de tränade DRL-agenterna till adversarial attacker. Dessa test visade att i genomsnitt har det större påverkan på kontrollagenterna att använda DRL metoder än att använda sig av FGSM medans att attackera helt slumpmässigt har nästan ingen påverkan.
Petersson, Victor. „Exhaust Temperature Modeling and Optimal Control of Catalytic Converter Heating“. Thesis, Linköpings universitet, Fordonssystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157606.
Der volle Inhalt der QuelleYevseienko, Oleg, Anatoliy Gapon und Dmytro Salnikov. „Searching for Optimal Control Parameters of Thermal Object Using Pulse-Width Modulation (PWM) Control with Predictive Filter“. Thesis, Lviv Polytechnic Publishing House, 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41116.
Der volle Inhalt der QuelleMartins, Ricardo Alves. „Termorregulação e depressão metabólica em endotermos“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-13102009-154825/.
Der volle Inhalt der QuelleMetabolic depression of mammals and birds, animals of high metabolic demands, normally emerges as a response to food shortage and low ambient temperature. The main goal of this research is to explore, in a theoretical perspective, how the thermoregulatory system could extend the energy reserves of these endotherms decreasing metabolic costs under those environmental conditions. To approach the problem, we propose the use of control engineering theories to analyze the way the this minimization could occur, in other words, how the nervous system would act establishing a control (hypothalamic set-point) to minimize those costs during the thermoregulatory process. In this context, we propose a basic thermoregulation model that takes into account body temperature, metabolic rate and environmental temperature, and in which the set-point acts as a control. We show how this model can significantly reduce disturbances generated by ambient temperature. Using optimal control theory, we show how the hypothalamic set-point can emerge as a result of a minimization process of a functional related to thermoregulation costs. Also, how ambient temperature can define different metabolic profiles is explored, in terms of metabolic depression and the necessary return to euthermic conditions. To quantify this analysis we propose an index, based on the ratio between a constant metabolic cost and the metabolic cost defined by the controller. After a period in metabolic depression individuals should return to their euthermic condition, and, in situations of low environmental temperature, it is shown that the cost to return can be larger than the advantages. In this way, analyzing body mass influences we observed increased metabolic depression cost in larger individuals. This cost is even higher under lower environmental temperature. Finally, the cost related to the time elapsed, until the euthermic state is reached again, is considered. These last results are in accordance with current conception about the flexibility in hibernation process.
Andersson, Fredrik, und Hampus Andersson. „Numerical Optimal Control of Hybrid Electric Trucks : Exhaust Temperature, NOx Emission and Fuel Consumption“. Thesis, Linköpings universitet, Fordonssystem, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148680.
Der volle Inhalt der QuelleDunbabin, Matthew D. „The influence of temperature on PZT sensors & actuators for active vibration control of flexible structures“. Thesis, Queensland University of Technology, 2002. https://eprints.qut.edu.au/36162/7/36162_Digitised%20Thesis-4_Redacted.pdf.
Der volle Inhalt der QuelleKaymaz, I. Ali. „Control strategies for exothermic batch and fed-batch processes : a sub-optimal strategy is developed which combines fast response with a chosen control signal safety margin : design procedures are described and results compared with conventional control“. Thesis, University of Bradford, 1989. http://hdl.handle.net/10454/4217.
Der volle Inhalt der QuelleYin, Liangzhen. „Intelligent control for performance optimization of proton exchange membrane fuel cell system“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCA013.
Der volle Inhalt der QuelleProton exchange membrane fuel cell (PEMFC) system has been considered as the new power generation technology as it has the advantage of high power density, zero emission, high efficiency, and fast start-up characteristics. Therefore, this thesis is devoted to researching system integration, system parameter trcking control, and system performance optimization for open-cathode and closed-cathode PEMFC systems. For open-cathode PEMFC system, the stack temperature is the key factor sffecting the output performance of the system. In order to improve the dynamic temperature tracking performance under load changing conditions, adaptive inverse control and grey prediction based model free adaptive control is proposed for optimal temperature control of system. Further, in order to enhance the system efficiency of system, a maximum efficiency control strategy based on maximum efficiency optimization and constraint generalized predictive control is proposed in this thesis. For closed-cathode PEMFC system, considering the existed nonlinearity and strong coupling between operating parameters such as stack temperature and oxygen excess ratio (OER), a dual loop multivariable control strategy based on MIMO model free adaptive sliding mode control is proposed for stack temperature and air flow rate regulation of closed-cathode PEMFC system. Moreover, a 300 W open-cathode PEMFC system test bench and a 5-kW closed-cathode PEMFC system tests bench are established. All the control strategies and the performance optimization strategies are verified on the established test bench of open-cathode and closed-cathode PEMFC systems
Costa, Filho Pedro Turibe. „Plataforma de Testes de Algoritmos de Controle para Sistemas em Tempo Real“. Universidade Federal do Maranhão, 2006. http://tedebc.ufma.br:8080/jspui/handle/tede/446.
Der volle Inhalt der QuelleThe conception, design and synthesis of a platform to evaluate the performance of the in real time control algorithms is the main focuses of this Master Thesis. For conception purpose, the platform is classi¯ed in structural and functional parts, the structural one is composed of the hardware that are sensors, actuators, controllers and related devices. The functional part is formed by algorithms to manager the platform resources and real time control strategies. The platform is dedicated to the speed control of a direct current motor and the temperature control of an electric furnace. These plants are used to develop methods for real time control, parameter estimation and controller tuning. The parameter estima- tion of the motor and furnace is performed in the platform, the obtained models are used to design the PID controller optimal gains.
Apresenta-se uma metodologia para o projeto de uma plataforma para avaliar o desempenho de algoritmos de controle em tempo real. O sistema é organizado em partes estrutural e funcional; a estrutural é constituída pelos elementos de hardware que são as plantas, sensores, atuadores e controladores; a parte funcional é constituída pelos algoritmos para o gerenciamento dos recursos da plataforma e para controle de sistemas dinâmicos. A plataforma é dedicada ao controle de velocidade de um motor de corrente continua e controle de temperatura de um forno elétrico, estas plantas são utilizadas para o desenvolvimento de métodos e verificação de aplicações de controle em tempo real, estimação de parâmetros e sintonia de ganhos dos controladores. A plataforma é utilizada para o levantamento dos parâmetros do motor e forno. Os modelos das plantas são utilizados para o projeto de controladores do tipo PID que são sintonizados por métodos de otimização.
Bücher zum Thema "Optimal temperature control"
L, Tuma Margaret, und United States. National Aeronautics and Space Administration., Hrsg. Fabry-Perot fiber-optic temperature sensor system. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenMichael, Bremer, und SpringerLink (Online service), Hrsg. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Den vollen Inhalt der Quelle findenCanfield, Donald Eugene. What Is It about Planet Earth? Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691145020.003.0001.
Der volle Inhalt der QuelleNguyen, Kim-Phuong, und Chris D. Glover. Anesthetic Considerations for Scoliosis Repair. Herausgegeben von Erin S. Williams, Olutoyin A. Olutoye, Catherine P. Seipel und Titilopemi A. O. Aina. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190678333.003.0032.
Der volle Inhalt der QuelleRees, David. Insects of Stored Grain. CSIRO Publishing, 2007. http://dx.doi.org/10.1071/9780643094673.
Der volle Inhalt der QuelleBremer, Michael, und Albert Greve. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures. Springer, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Optimal temperature control"
Hinsberger, H., S. Miesbach und H. J. Pesch. „Optimal Temperature Control of Semibatch Polymerization Reactors“. In Scientific Computing in Chemical Engineering, 75–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80149-5_9.
Der volle Inhalt der QuelleSuzuki, Seiichi, Akira Anju und Mutsuto Kawahara. „Parameter Identification and Optimal Control of Underground Temperature“. In Computational Methods in Water Resources X, 807–14. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9204-3_98.
Der volle Inhalt der QuelleHerrero, H., und F. Pla. „Optimal Control of Buoyant Flows with Temperature-Dependent Viscosity“. In Progress in Industrial Mathematics at ECMI 2008, 881–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12110-4_141.
Der volle Inhalt der QuelleLiu, Derong, Qinglai Wei, Ding Wang, Xiong Yang und Hongliang Li. „Data-Based Neuro-Optimal Temperature Control of Water Gas Shift Reaction“. In Adaptive Dynamic Programming with Applications in Optimal Control, 571–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50815-3_14.
Der volle Inhalt der QuelleCui, Guimei, und Guibao Ding. „Research on the Optimal Control of Tube Billet Temperature for Rotary Reheating Furnace“. In Advanced Electrical and Electronics Engineering, 471–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19712-3_60.
Der volle Inhalt der QuelleSingh, Sanjay Kumar, D. Boolchandani, S. G. Modani und Nitish Katal. „Optimal Tuning of PID Controller for Centrifugal Temperature Control System in Sugar Industry Using Genetic Algorithm“. In Advances in Intelligent Systems and Computing, 183–91. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0451-3_18.
Der volle Inhalt der QuelleGeldhof, Joost J., Agata M. Malinowska, Gijs J. L. Wuite, Erwin J. G. Peterman und Iddo Heller. „Temperature Quantification and Temperature Control in Optical Tweezers“. In Optical Tweezers, 123–40. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2229-2_7.
Der volle Inhalt der QuelleYu, H. P., Y. K. Sui, J. Wang, X. L. Dai und G. P. An. „Optimal Control of Temperature Gradient in a Large Size Magnetic Czochralski Silicon Crystal Growth by Response Surface Methodology“. In Computational Methods in Engineering & Science, 330. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-48260-4_176.
Der volle Inhalt der QuelleXu, Zhe, Xulong Che, Bishi He, Yaguang Kong und Anke Xue. „Research on Temperature Optimal Control for the Continuous Casting Billet in Induction Heating Process Based on ARX Model“. In Lecture Notes in Electrical Engineering, 777–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38460-8_86.
Der volle Inhalt der QuelleZhang, Yihan, Zhenfei Xiao und Jinna Li. „Optimal Control for Cracking Outlet Temperature (COT) of SC-1 Ethylene Cracking Furnace by Off-Policy Q-Learning Approach“. In Communications in Computer and Information Science, 342–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4932-2_25.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optimal temperature control"
Wyman, Douglas R., Carrie-Lynne Swift, Rosemarie A. Siwek und Brian C. Wilson. „Optimal temperature control in laser hyperthermia“. In OE/LASE '90, 14-19 Jan., Los Angeles, CA, herausgegeben von Abraham Katzir. SPIE, 1990. http://dx.doi.org/10.1117/12.17601.
Der volle Inhalt der QuelleAstashova, I. V., A. V. Filinovskiy und D. A. Lashin. „On optimal temperature control in hothouses“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992311.
Der volle Inhalt der QuelleYang, Zhichao, Bo Sun, Fan Li und Liang Zhang. „A Temperature Optimal Control Method of Temperature Control System Considering Thermal Inertia“. In 2019 Chinese Control Conference (CCC). IEEE, 2019. http://dx.doi.org/10.23919/chicc.2019.8865163.
Der volle Inhalt der QuelleRiascos, Luis A. M., und David D. Pereira. „Optimal temperature control in PEM fuel cells“. In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415416.
Der volle Inhalt der QuelleYadav, Vivek, Radhakant Padhi und S. N. Balakrishnan. „Robust/optimal temperature profile control using neural networks“. In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4777145.
Der volle Inhalt der QuelleJiliang, Shang, Yu Wei und Gao Dexin. „Study of Compound Optimal Control for Beer Saccharification Temperature“. In 2007 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.4346790.
Der volle Inhalt der QuelleZenghuan, Liu, Wang Lizhen und He Guangxiang. „Study on Optimal Control of Furnace Temperature Uniformity“. In 2011 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2011. http://dx.doi.org/10.1109/icicta.2011.141.
Der volle Inhalt der QuelleYadav, Vivek, Radhakant Padhi und S. Balakrishnan. „Robust/Optimal Temperature Profile Control Using Neural Networks“. In 2006 IEEE International Conference on Control Applications. IEEE, 2006. http://dx.doi.org/10.1109/cca.2006.286115.
Der volle Inhalt der QuelleZhou, Su, Xuelei Zhi und Linjiong Yu. „Temperature Control of PEMFC Based on Optimal Power Consumption“. In 2019 Chinese Control Conference (CCC). IEEE, 2019. http://dx.doi.org/10.23919/chicc.2019.8865220.
Der volle Inhalt der QuelleDongsuk Kum, Huei Peng und Norman K. Bucknor. „Optimal catalyst temperature management of Plug-in Hybrid Electric Vehicles“. In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5991499.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Optimal temperature control"
Meza, J. C., und T. D. Plantenga. Optimal control of a CVD reactor for prescribed temperature behavior. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/61183.
Der volle Inhalt der QuelleMartinez, Melissa. Visual Patching and Imaging Chambers. ConductScience, Juli 2022. http://dx.doi.org/10.55157/cs20220507.
Der volle Inhalt der QuelleLieth, J. Heiner, Michael Raviv und David W. Burger. Effects of root zone temperature, oxygen concentration, and moisture content on actual vs. potential growth of greenhouse crops. United States Department of Agriculture, Januar 2006. http://dx.doi.org/10.32747/2006.7586547.bard.
Der volle Inhalt der QuelleFiron, Nurit, Prem Chourey, Etan Pressman, Allen Hartwell und Kenneth J. Boote. Molecular Identification and Characterization of Heat-Stress-Responsive Microgametogenesis Genes in Tomato and Sorghum - A Feasibility Study. United States Department of Agriculture, Oktober 2007. http://dx.doi.org/10.32747/2007.7591741.bard.
Der volle Inhalt der QuelleBenedict, Katherine, Michael Moosmuller, Kyle Gorkowski und Manvendra Dubey. Improved temperature control for measuring the humidity dependence of aerosol optical properties. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1813816.
Der volle Inhalt der QuelleYahav, Shlomo, John Brake und Orna Halevy. Pre-natal Epigenetic Adaptation to Improve Thermotolerance Acquisition and Performance of Fast-growing Meat-type Chickens. United States Department of Agriculture, September 2009. http://dx.doi.org/10.32747/2009.7592120.bard.
Der volle Inhalt der QuelleMoosmuller, Michael, Kyle Gorkowski, Katherine Benedict und Manvendra Dubey. Improved Temperature Control for Measuring the Humidity Dependence of Aerosol Optical Properties [Slides]. Office of Scientific and Technical Information (OSTI), Juli 2021. http://dx.doi.org/10.2172/1811850.
Der volle Inhalt der QuelleOlsen. PR-179-07200-R01 Evaluation of NOx Sensors for Control of Aftertreatment Devices. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2008. http://dx.doi.org/10.55274/r0010985.
Der volle Inhalt der QuelleYahav, Shlomo, John McMurtry und Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.
Der volle Inhalt der QuelleHuang, Cihang, Yen-Fang Su und Na Lu. Self-Healing Cementitious Composites (SHCC) with Ultrahigh Ductility for Pavement and Bridge Construction. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317403.
Der volle Inhalt der Quelle