Auswahl der wissenschaftlichen Literatur zum Thema „Optics design“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optics design" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Optics design"

1

Pârvulescu, Cǎtǎlin Corneliu, Elena Manea, Cǎtǎlin Tibeica, Munizer Purica und Alina Popescu. „Design and Fabrication of the Bidirectional Micro-Optic Concentrator for Optical Radiation“. Defect and Diffusion Forum 400 (März 2020): 21–31. http://dx.doi.org/10.4028/www.scientific.net/ddf.400.21.

Der volle Inhalt der Quelle
Annotation:
This paper presents the design and fabrication of a micro-optic concentrator for optical radiation based on coupled micro-lenses and micro-prism (micro – mirrors) arrays. This type of micro-optic concentrator is suitable for both terrestrial and spatial applications where optical radiation is redirected and coupled to small area photovoltaic cells or detection devices located in front of the waveguide edges. Analysis and design were performed for the 0.4-1.06µm spectral range using the COMSOL Multiphysics program and the Ray Optics geometric optics module. Simulations for ray-tracing have been modeled in order to optimize the geometries of micro-optics elements taking into account the optical parameters of the materials to be used (polymers and glass) in the process of micro-optic concentrator fabrication. Micro-lenses and micro-prism arrays were fabricated by the technique of molding in silicon molds and replication in polymeric materials using OrmoClear30 elastomer (n=1.56, UV exposure) and in UV-PDMS, KER4690 polymer, respectively. Assembling and the fabrication process of micro-optic concentrator allowed the achievement of an optical efficiency of 70 % efficiency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gmachl, Claire. „Quantum optics by design“. Nature Materials 5, Nr. 3 (März 2006): 169–70. http://dx.doi.org/10.1038/nmat1603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zenteno, L. A. „Design of a magneto-optic slab isolator for integrated optics“. Optics Letters 12, Nr. 9 (01.09.1987): 657. http://dx.doi.org/10.1364/ol.12.000657.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Watanabe, Takeo, Tsuneyuki Haga, Masahito Niibe und Hiroo Kinoshita. „Design of beamline optics for EUVL“. Journal of Synchrotron Radiation 5, Nr. 3 (01.05.1998): 1149–52. http://dx.doi.org/10.1107/s0909049597017536.

Der volle Inhalt der Quelle
Annotation:
The design of front-end collimating optics for extreme-ultraviolet lithography (EUVL) is reported. For EUVL, collimating optics consisting of a concave toroidal mirror and a convex toroidal mirror can achieve shorter optical path lengths than collimating optics consisting of two concave toroidal mirrors. Collimating optics consisting of a concave toroidal mirror and a convex toroidal mirror are discussed. The design of collimating optics for EUVL beamlines based on ray-tracing studies is described.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nikolov, Daniel K., Aaron Bauer, Fei Cheng, Hitoshi Kato, A. Nick Vamivakas und Jannick P. Rolland. „Metaform optics: Bridging nanophotonics and freeform optics“. Science Advances 7, Nr. 18 (April 2021): eabe5112. http://dx.doi.org/10.1126/sciadv.abe5112.

Der volle Inhalt der Quelle
Annotation:
The demand for high-resolution optical systems with a compact form factor, such as augmented reality displays, sensors, and mobile cameras, requires creating new optical component architectures. Advances in the design and fabrication of freeform optics and metasurfaces make them potential solutions to address the previous needs. Here, we introduce the concept of a metaform—an optical surface that integrates the combined benefits of a freeform optic and a metasurface into a single optical component. We experimentally realized a miniature imager using a metaform mirror. The mirror is fabricated via an enhanced electron beam lithography process on a freeform substrate. The design degrees of freedom enabled by a metaform will support a new generation of optical systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tseng, Ethan, Ali Mosleh, Fahim Mannan, Karl St-Arnaud, Avinash Sharma, Yifan Peng, Alexander Braun, Derek Nowrouzezahrai, Jean-François Lalonde und Felix Heide. „Differentiable Compound Optics and Processing Pipeline Optimization for End-to-end Camera Design“. ACM Transactions on Graphics 40, Nr. 2 (21.06.2021): 1–19. http://dx.doi.org/10.1145/3446791.

Der volle Inhalt der Quelle
Annotation:
Most modern commodity imaging systems we use directly for photography—or indirectly rely on for downstream applications—employ optical systems of multiple lenses that must balance deviations from perfect optics, manufacturing constraints, tolerances, cost, and footprint. Although optical designs often have complex interactions with downstream image processing or analysis tasks, today’s compound optics are designed in isolation from these interactions. Existing optical design tools aim to minimize optical aberrations, such as deviations from Gauss’ linear model of optics, instead of application-specific losses, precluding joint optimization with hardware image signal processing (ISP) and highly parameterized neural network processing. In this article, we propose an optimization method for compound optics that lifts these limitations. We optimize entire lens systems jointly with hardware and software image processing pipelines, downstream neural network processing, and application-specific end-to-end losses. To this end, we propose a learned, differentiable forward model for compound optics and an alternating proximal optimization method that handles function compositions with highly varying parameter dimensions for optics, hardware ISP, and neural nets. Our method integrates seamlessly atop existing optical design tools, such as Zemax . We can thus assess our method across many camera system designs and end-to-end applications. We validate our approach in an automotive camera optics setting—together with hardware ISP post processing and detection—outperforming classical optics designs for automotive object detection and traffic light state detection. For human viewing tasks, we optimize optics and processing pipelines for dynamic outdoor scenarios and dynamic low-light imaging. We outperform existing compartmentalized design or fine-tuning methods qualitatively and quantitatively, across all domain-specific applications tested.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gao, Yubin, Qikai Chen, Sijie Pian und Yaoguang Ma. „Inverse design in flat optics“. Photonics and Nanostructures - Fundamentals and Applications 52 (Dezember 2022): 101074. http://dx.doi.org/10.1016/j.photonics.2022.101074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Braat, Joseph. „Design of beam-shaping optics“. Applied Optics 34, Nr. 15 (20.05.1995): 2665. http://dx.doi.org/10.1364/ao.34.002665.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Snail, Keith A. „Reflectometer design using nonimaging optics“. Applied Optics 26, Nr. 24 (15.12.1987): 5326. http://dx.doi.org/10.1364/ao.26.005326.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kundtz, Nathan B., David R. Smith und John B. Pendry. „Electromagnetic Design With Transformation Optics“. Proceedings of the IEEE 99, Nr. 10 (Oktober 2011): 1622–33. http://dx.doi.org/10.1109/jproc.2010.2089664.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Optics design"

1

Bauman, Brian Jeffrey. „Optical design for extremely large telescope adaptive optics systems“. Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280465.

Der volle Inhalt der Quelle
Annotation:
Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,ȳ method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by subaperture as the light is returned from the upward-propagating laser pulse. A second method can be used if the laser is not pulsed. A lenslet array is described which creates "pixels" which are aligned with the axes of the elongated spot of each subaperture, without requiring special charge-coupled devices (CCD's).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Villalaz, Ricardo A. „Volume Grating Couplers for Optical Interconnects: Analysis, Design, Fabrication, and Testing“. Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-07102004-165012/unrestricted/villalaz%5Fricardo%5Fa%5F200407%5Fphd.pdf.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--School of Electrical and Computer Engineering, Georgia Institute of Technology, 2005. Directed by Thomas Gaylord.
Glytsis, Elias, Committee Co-Chair ; Buck, John, Committee Member ; Kohl, Paul, Committee Member ; Adibi, Ali, Committee Member ; Gaylord, Thomas, Committee Chair. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Akcay, Avni Ceyhun. „System design and optimization of optical coherence tomography“. Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3586.

Der volle Inhalt der Quelle
Annotation:
Optical coherence imaging, including tomography (OCT) and microscopy (OCM), has been a growing research field in biomedical optical imaging in the last decade. In this imaging modality, a broadband light source, thus of short temporal coherence length, is used to perform imaging via interferometry. A challenge in optical coherence imaging, as in any imaging system towards biomedical diagnosis, is the quantification of image quality and optimization of the system components, both a primary focus of this research. We concentrated our efforts on the optimization of the imaging system from two main standpoints: axial point spread function (PSF) and practical steps towards compact low-cost solutions. Up to recently, the criteria for the quality of a system was based on speed of imaging, sensitivity, and particularly axial resolution estimated solely from the full-width at half-maximum (FWHM) of the axial PSF with the common practice of assuming a Gaussian source power spectrum. As part of our work to quantify axial resolution we first brought forth two more metrics unlike FWHM, which accounted for side lobes in the axial PSF caused by irregularities in the shape of the source power spectrum, such as spectral dips. Subsequently, we presented a method where the axial PSF was significantly optimized by suppressing the side lobes occurring because of the irregular shape of the source power spectrum. The optimization was performed through optically shaping the source power spectrum via a programmable spectral shaper, which consequentially led to suppression of spurious structures in the images of a layered specimen. The superiority of the demonstrated approach was in performing reshaping before imaging, thus eliminating the need for post-data acquisition digital signal processing. Importantly, towards the optimization and objective image quality assessment in optical coherence imaging, the impact of source spectral shaping was further analyzed in a task-based assessment method based on statistical decision theory. Two classification tasks, a signal-detection task and a resolution task, were investigated. Results showed that reshaping the source power spectrum was a benefit essentially to the resolution task, as opposed to both the detection and resolution tasks, and the importance of the specimen local variations in index of refraction on the resolution task was demonstrated. Finally, towards the optimization of OCT and OCM for use in clinical settings, we analyzed the detection electronics stage, which is a crucial component of the system that is designed to capture extremely weak interferometric signals in biomedical and biological imaging applications. We designed and tested detection electronics to achieve a compact and low-cost solution for portable imaging units and demonstrated that the design provided an equivalent performance to the commercial lock-in amplifier considering the system sensitivity obtained with both detection schemes.
Ph.D.
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bainbridge, John David. „The design and application of an optical demultiplexer“. Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302165.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Lirong. „DESIGN, MODELING AND TESTING OF OPTICAL SURFACES IN ILLUMINATION OPTICS“. Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/195097.

Der volle Inhalt der Quelle
Annotation:
This dissertation investigates design, modeling and testing methods of optical surfaces in illumination optics.The main focus of this dissertation is to investigate the faceted non-imaging specular light reflector that is often used to generate a uniform, incoherent illuminance distribution. General design methodologies of faceted light reflectors are overviewed. Several design examples of faceted light reflectors including a novel LED flashlight, a novel microscope illuminator and a 20-m segmented paraboloidal solar collector are discussed and analyzed.An accurate source model is important for illumination system design. In this dissertation, an analytic short-arc source modeling method is developed and integrated in the illumination design software ZEMAX.In addition to the design and modeling work, this dissertation explores a flexible, low-cost and robust Software Configurable Optical Test System (SCOTS) for testing specular free-form surfaces that are often used in illumination systems. The application of this testing system in measuring a 3-m segmented paraboloidal solar reflector is investigated. Preliminary SCOTS test results for an F/0.2 concave automotive headlight reflector are introduced. In addition to testing the surfaces of illumination optics using SCOTS, the applications of SCOTS in the measurement of large, high precision optics are also explored and briefly discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Abobaker, Abdosllam M. „Analytical design of dispersion-managed optical fibre transmission systems“. Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2008. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=24668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Börjeson, Charlie. „Design of a compact wavefront sensor for measurements on the human eye“. Thesis, KTH, Tillämpad fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284689.

Der volle Inhalt der Quelle
Annotation:
Wavefront sensors for measurements on human eyes are usually large, expensive and difficult to move. A compact wavefront sensor would be more cost-effective and versatile as is could be used in multiple systems. The aim of this thesis was to produce a more compact and portable wavefront sensor. A shorter telescope design for the wavefront sensor was proposed and checked theoretically and with computer simulations. An experimental arrangement comparing the proposed telescope design with a conventional telescope design was constructed. A compact wavefront sensor was built using off-the-shelf components and a few modified components. Tests with the compact wavefront sensor were made both on eye models and on human eyes. The compact wavefront sensor correctly measured the refractive errors of two eye models. It was also possible to perform measurements on human eyes, both in the central and peripheral visual fields, and higher order aberrations were confirmed. For positioning human eyes at the correct distance from the wavefront sensor an additional pupil camera was needed, which was not included in the system. Future improvements for the compact wavefront sensor are discussed.
Vågfrontssensorer för mätningar på ögon är ofta mycket stora, dyra och svåra att transportera. En kompakt vågfrontssensor skulle vara kostnadseffektiv och flexibel eftersom den skulle kunna användas i flera olika system. Målet med detta examensarbete var att producera en mer kompakt och transportabel vågfrontssensor. En kortare teleskopvariant föreslogs och analyserades både teoretiskt och med datorsimuleringar. En experimentell uppsättning gjordes också för att jämföra den kortare teleskopdesignen med ett sedvanligt vågfrontssensorteleskop. En kompakt vågfrontssensor byggdes med standardkomponenter samt med några modifierade standardkomponenter. Tester med den kompakta vågfrontssensorn gjordes både på ögonmodeller och mänskliga ögon. Den kompakta vågfrontssensorn gav korrekta mätvärden på brytningsfelen på ögonmodellerna. Det gick bra att genomföra mätningar på mänskliga ögon, både i centrala och perifera synfältet, och högre ordningens aberrationer bekräftades. För att placera mänskliga ögon på korrekt avstånd från vågfrontssensorn krävdes en extra pupillkamera, som inte var inkluderad i den kompakta vågfrontssensorn. Framtida förbättringar för den kompakta vågfrontssensorn diskuteras.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rydberg, Sara. „Rare Earth elements in optical materials and design of high power ytterbium fiber laser for frequency doubling using nonlinear ppKTP crystal“. Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-36138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shen, Linping Huang Wei-Ping. „Modeling and design of photonic crystal waveguides and fibers /“. *McMaster only, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sabra, Ahmad. „Nonlinear PDE and Optical Surfaces Design“. Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/345398.

Der volle Inhalt der Quelle
Annotation:
Mathematics
Ph.D.
We introduce two models to design near field reflectors in R^3 that solve an inverse problem in radiometry, taking into account the inverse square law of irradiance. The problem leads to a Monge-Ampere type inequality. The surfaces in the first model are strictly convex and require to be far from the source to avoid obstruction. In the second model, the reflectors are neither convex nor concave and do not block the rays even if they are close to the source.
Temple University--Theses
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Optics design"

1

1943-, Macdonald John, Hrsg. Geometrical optics and optical design. New York: Oxford University Press, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rudolf, Kingslake, Hrsg. Applied optics and optical design. New York: Dover Publications, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nussbaum, Allen. Optical system design. Upper Saddle River, NJ: Prentice Hall PTR, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

März, Reinhard. Integrated optics: Design and modeling. Boston: Artech House, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Venrooij, Martin A. M. van, 1934-, Berry Richard 1946- und Lucas Diane, Hrsg. Telescope Optics: Evaluation and Design. Richmond, Va., U.S.A: Willmann-Bell, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lifante, Ginés. Beam propagation method: For design of optical waveguide devices. Chichester, West Sussex: John Wiley & Sons, Inc., 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Corporation, Lambda Research, Hrsg. Oslo, optics software for layout and optimization: Optics reference. Littleton, MA: Lambda Research Corp., 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hoss, Robert J. Fiber optics. 2. Aufl. Hemel Hempstead: Prentice-Hall, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kidger, Michael J. Intermediate optical design. Bellingham, WA: SPIE Press, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

John, Strong. Procedures in applied optics. New York: M. Dekker, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Optics design"

1

Gerhard, Christoph. „Design of Optical Components“. In Optics Manufacturing, 57–84. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017] | Series: Optical sciences and applications of light: CRC Press, 2017. http://dx.doi.org/10.1201/9781351228367-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schomburg, Werner Karl. „Micro Optics“. In Introduction to Microsystem Design, 223–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47023-7_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baker, Donald G. „Integrated Optics“. In Monomode Fiber-Optic Design, 196–249. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-011-7000-0_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wolf, Marilyn. „Light, Optics, and Imaging“. In Smart Camera Design, 7–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69523-5_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Herzig, H. P. „Design of Refractive and Diffractive Micro-Optics“. In Diffractive Optics and Optical Microsystems, 23–33. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1474-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hazra, Lakshminarayan. „Paraxial Optics“. In Foundations of Optical System Analysis and Design, 61–113. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9780429154812-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Boffi, P., G. Maier, M. Martinelli und A. Pattavina. „ATM and Optics“. In Optical Networks: Design and Modelling, 149–65. New York, NY: Springer US, 1999. http://dx.doi.org/10.1007/978-0-387-35398-2_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lin, Psang Dain. „Prism Design Based on Image Orientation“. In Advanced Geometrical Optics, 267–94. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2299-9_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Klein, Peter, und Michael Kennedy. „Part Design“. In Synthesis Lectures on Materials and Optics, 57–76. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63528-1_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hessler, T., und M. Rossi. „Design and Fabrication Aspects of Continuous-Relief Diffractive Optical Elements“. In Diffractive Optics and Optical Microsystems, 139–48. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1474-3_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Optics design"

1

Lawrence, George N., und Kenneth E. Moore. „Optical Design and Optimization with Physical Optics“. In International Lens Design. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/ild.1990.lma3.

Der volle Inhalt der Quelle
Annotation:
This paper describes implementation of optimization methods in physical optics modeling, similar to those used in geometrical lens design, but capable of treating the greater range of performance aspects which may be considered in a physical optics treatment. Physical optics, using a complex amplitude description of the optical beam and using Fourier diffraction propagation, provides a more accurate and powerful means of analysis than geometrical methods. Physical optics can more easily include nonlinear gain, unusual aperture shapes; a wider range of aberration types; mechanical and nonlinear optic phase conjugators; nonlinear optics effects such as stimulated Raman scattering, four-wave mixing, frequency doubling; optical resonators; etc.,.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rogers, Philip J. „Athermalized FLIR Optics“. In International Lens Design. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/ild.1990.lthd2.

Der volle Inhalt der Quelle
Annotation:
All common infrared materials suffer from a relatively large change of refractive index with temperature (dn/dt); the most common material - germanium - also being the worst having a value more than two orders of magnitude higher than that for a typical optical glass. The effect of the resultant thermal change of optical power is that an all-germanium FLIR optic will rapidly defocus as temperature changes. The tolerable temperature range before this defocus results in unacceptable imagery (Strehl Ratio <0.8) can be calculated as being only approximately ± 3 1 2 ° C for a typical all-Ge optic of 100 millimetre diameter : thus some form of athermalization is required for the successful operation of most FLIR optics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Futhey, John, und Madeleine Fleming. „Superzone diffractive lenses“. In Difraction Optics: Design, Fabrication, and Applications. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/do.1992.ma2.

Der volle Inhalt der Quelle
Annotation:
Diffractive optical elements, particularly kinoforms, can be fabricated by multi-mask photo-lithography or by diamond turning. At the 3M Optics Technology Center in Petaluma California, we are currently investigating methods to diamond turn such optics. As the aperture of the optic increases and the f/number decreases, the number of discrete zones that must be cut increases and the size of the individual zones becomes smaller. This combination of more and smaller zones provides a challenge -- and an eventual limit -- to diamond turning capabilities. We show how a novel design allows us to diamond turn diffractive optics that are larger and faster than was previously possible, but whose theoretical performance is nearly diffraction limited.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Latawiec, Pawel, Ali Forouzmand und Mohammad Mahdi Salary. „Practical Machine Learning for Multi-Scale Optical Design“. In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fw1a.2.

Der volle Inhalt der Quelle
Annotation:
The tooling available to optical system designers has advanced light years beyond first-order optics and raytracing, but these techniques have not fallen by the wayside. We discuss the practical synthesis of proven methods with cutting-edge machine learning models to tackle problems in meta-optic design, tolerancing, and yield analysis as relevant to industry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rolland, Jannick P. „Optics in virtual reality environments“. In International Optical Design Conference. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/iodc.1998.ltub.1.

Der volle Inhalt der Quelle
Annotation:
Optics plays an important role in the establishment of virtual environments that provides accurate visualization of a conceive or enhanced visual world. The interface between the human visual system and the virtual environment is highly based on knowledge of optics, not only in the use of optical technology for visualization but also in specifying the software for visualization. Moreover, optical tracking technology is currently the state of the art technology for accurate and precise tracking. Finally, optical principles can also be applied to the design of enhanced illumination schemes for augmented reality applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pollicove, Harvey M. „Automation in Optics Manufacturing“. In International Lens Design. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/ild.1990.jwc2.

Der volle Inhalt der Quelle
Annotation:
Automated systems based on computer integrated manufacturing (CIM) and flexible machining systems (FMS) have been widely implemented by American industry. Competitive pressures and increasing customer quality demands have motivated application of CIM and FMS concepts over a wide range of manufacturing processes in the electronics and machining industries. This paper describes the CIM-based optical manufacturing technology being developed at the Center for Optics Manufacturing. The Center was established through the joint efforts of the American Precision Optics Manufacturers Association (APOMA), several academic institutions and the Department of Defense.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kostuk, Raymond K., James M. Battiato, Charles W. Haggans und Gene Campbell. „Hybrid Diffractive Elements for Planar Optics“. In Optical Design for Photonics. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/odp.1993.tua.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mait, Joseph N., und Mark S. Mirotznik. „Subwavelength Diffractive Design“. In Diffractive Optics and Micro-Optics. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/domo.2000.dma3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dayton, David, Darren Laughlin und John Gonglewski. „Optics Design of Compact Deformable Mirror Experiment“. In Adaptive Optics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/adop.1995.tua39.

Der volle Inhalt der Quelle
Annotation:
Optical Design of a compact adaptive optics systems, to be mounted on the side of a large telescope presents special problems. In particular the limited space requires fast optics. Signal to noise requirements for the wave-front sensor also require that the optics work over a wide optical band. In this paper we describe the design and layout of such an adaptive optics experiment performed on the SOR 3.5 meter telescope.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lawrence, George N. „Optical design with physical optics using GLAD“. In 1990 Intl Lens Design Conf, herausgegeben von George N. Lawrence. SPIE, 1991. http://dx.doi.org/10.1117/12.47899.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Optics design"

1

Bauman, Brian J. Optical Design for Extremely Large Telescope Adaptive Optics Systems. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/15009753.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Claudet, Andre A., William C. Sweatt, V. Carter Hodges, David Price Adams, David Dennis Gill und Michael J. Vasile. Design and manufacturing of complex optics: the dragonfly eye optic. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/902204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hennage, David W. Diffractive Optics: Design, Fabrication, and Applications. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1994. http://dx.doi.org/10.21236/ada290942.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Huegle, Thomas, und Lee Robertson. NB5 GP-SANS preliminary optics design. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2001402.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Robertson, Lee, und Thomas Huegle. NB3 Bio-SANS preliminary optics design. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2001401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Herrmannsfeldt, W. B. EGUN: An electron optics and gun design program. Office of Scientific and Technical Information (OSTI), Oktober 1988. http://dx.doi.org/10.2172/6711732.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Johnstone, John A. A modular optics design for the LBNE beamline. Office of Scientific and Technical Information (OSTI), Oktober 2010. http://dx.doi.org/10.2172/1002006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

John A. Johnstone. A modular optics design for the NuMI beamline. Office of Scientific and Technical Information (OSTI), Juli 2002. http://dx.doi.org/10.2172/797448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Herrmannsfeldt, W. EGUN- An Electron Optics and GUN Design Program. Office of Scientific and Technical Information (OSTI), Juni 2018. http://dx.doi.org/10.2172/1454040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Swanson, G. J. Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada213404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie