Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optical tomography“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optical tomography" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optical tomography"
Kalnaya, O. A., und Yu S. Kurskoy. „Femtosecond Optical Tomography“. Metrology and instruments, Nr. 2 (21.05.2020): 57–60. http://dx.doi.org/10.33955/2307-2180(2)2020.57-60.
Der volle Inhalt der QuellePattan, Anusha U., und Shubhangi D.C. „Optical Tomography: The Survey on Optical Tomographic Techniques“. International Journal of Advanced Research in Computer Science and Software Engineering 7, Nr. 6 (30.06.2017): 376–81. http://dx.doi.org/10.23956/ijarcsse/v7i6/0300.
Der volle Inhalt der QuelleKumar Singh Anjali, Avanish. „Study of Clinical Evaluation of Glaucoma with Anterior Segment OCT (Optical Coherence Tomography) and Optic Nerve Head OCT (Optical Coherence Tomography)“. International Journal of Science and Research (IJSR) 12, Nr. 8 (05.08.2023): 627–32. http://dx.doi.org/10.21275/mr23728180729.
Der volle Inhalt der QuelleHaisch, Christoph. „Optical Tomography“. Annual Review of Analytical Chemistry 5, Nr. 1 (19.07.2012): 57–77. http://dx.doi.org/10.1146/annurev-anchem-062011-143138.
Der volle Inhalt der QuelleCoufal, Hans. „Optical tomography?“ Journal of Molecular Structure 347 (März 1995): 285–91. http://dx.doi.org/10.1016/0022-2860(95)08551-6.
Der volle Inhalt der QuelleLeutwyler, Kristin. „Optical Tomography“. Scientific American 270, Nr. 1 (Januar 1994): 147–49. http://dx.doi.org/10.1038/scientificamerican0194-147.
Der volle Inhalt der QuelleDavis, Cole, und Wayne Kuang. „Optical coherence tomography: a novel modality for scrotal imaging“. Canadian Urological Association Journal 3, Nr. 4 (01.05.2013): 319. http://dx.doi.org/10.5489/cuaj.1128.
Der volle Inhalt der QuelleSoeda, Tsunenari, Shiro Uemura, Yoshihiko Saito, Kyoichi Mizuno und Ik-Kyung Jang. „Optical Coherence Tomography and Coronary Plaque Characterization“. Journal of the Japanese Coronary Association 19, Nr. 4 (2013): 307–14. http://dx.doi.org/10.7793/jcoron.19.033.
Der volle Inhalt der QuelleC. Kharmyssov, C. Kharmyssov, M. W. L. Ko M. W. L. Ko und J. R. Kim J. R. Kim. „Automated segmentation of optical coherence tomography images“. Chinese Optics Letters 17, Nr. 1 (2019): 011701. http://dx.doi.org/10.3788/col201917.011701.
Der volle Inhalt der QuelleRollins, Andrew M., und Joseph A. Izatt. „Optimal interferometer designs for optical coherence tomography“. Optics Letters 24, Nr. 21 (01.11.1999): 1484. http://dx.doi.org/10.1364/ol.24.001484.
Der volle Inhalt der QuelleDissertationen zum Thema "Optical tomography"
Xu, Weiming. „Offset Optical Coherence Tomography“. Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1626870603439104.
Der volle Inhalt der QuelleHuang, David. „Optical coherence tomography“. Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12675.
Der volle Inhalt der QuelleMuscat, Sarah. „Optical coherence tomography“. Thesis, Connect to e-thesis, 2003. http://theses.gla.ac.uk/630/.
Der volle Inhalt der QuellePh.D. thesis submitted to the Department of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, 2003. Includes bibliographical references. Print version also available.
Nam, Haewon. „Ultrasound-modulated optical tomography“. Texas A&M University, 2002. http://hdl.handle.net/1969/448.
Der volle Inhalt der QuelleAkcay, Avni Ceyhun. „System design and optimization of optical coherence tomography“. Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3586.
Der volle Inhalt der QuellePh.D.
Optics and Photonics
Optics
Beitel, David. „Development of optical sources for optical coherence tomography“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112557.
Der volle Inhalt der QuelleFrom our experimental results with BBSs, we conclude that: (1) S/C-band output produced by the ASE emitted from two cascaded SOAs can be effectively extended with L-band output produced from the ASE of EDF; (2) An even broader output is achievable by: coupling the C-band and L-band outputs from a C-band SOA and EDF respectively and then amplifying the coupled output through an S-band SOA; (3) OCT imaging systems employing a light source with an S+C+L band output, with a center wavelength of approximately 1520 nm, can achieve high penetration depths in biological tissue.
From our experimental results with SFRLs, we conclude that: (1) Our two SFRL configurations generate picosecond pulses with reasonably narrow linewidths: 0.2--0.5 nm, and a sweeping range of about 50 nm; (2) These SFRLs can function as laser swept sources by setting the driving frequency of the RF generator to a periodic ramping function.
Behrooz, Ali. „Multiplexed fluorescence diffuse optical tomography“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50401.
Der volle Inhalt der QuelleWatson, Thomas. „Advances in optical projection tomography“. Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/58486.
Der volle Inhalt der QuelleBateni, Vahid. „Isogeometric Approach to Optical Tomography“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103863.
Der volle Inhalt der QuelleDoctor of Philosophy
CT scans can save lives by allowing medical practitioners observe inside the patient's body without use of invasive surgery. However, they use high energy, potentially harmful x-rays to penetrate the organs. Due to limits of the mathematical algorithm used to reconstruct the 3D figure of the organs from the 2D x-ray images, many such images are required. Thus, a high level of x-ray exposure is necessary, which in periodic use can be harmful. Optical Tomography is a promising alternative which replaces x-rays with harmless Near-infrared (NIR) visible light. However, NIR photons have lower energy and tend to scatter before leaving the organs. Therefore, an additional algorithm is required to predict the distribution of light photons inside the body and their resulting 2D images. This is called the forward problem of Optical Tomography. Only then, like conventional CT scans, can another algorithm, called the inverse solution, reconstruct the 3D image by diminishing the difference between the predicted and registered images. Currently Optical Tomography cannot replace x-ray CT scans for most cases, due to shortcomings in the forward and inverse algorithms to handle real life usages. One obstacle stems from the fact that the forward problem must be solved numerous times for the inverse solution to reach the correct visualization. However, the current numerical method, Finite Element Method (FEM), has limitations in generating accurate solutions fast enough using economically viable computers. This limitation is mostly caused by the FEM's use of a simpler mathematical construct that requires more computations and is limited in accurately modelling the geometry and shape. This research implements the recently developed Isogeometric Analysis (IGA) and particularly IGA-based FEM to address this issue. The IGA-based FEM uses the same mathematical construct that is used to visualize the geometry for complicated applications such as some animations and computer games. They are also less complicated to apply due to much lower need for partitioning the domain. This study applies the IGA method to solve the forward problem of diffuse Optical Tomography and compare the accuracy and speed of IGA solution to the conventional FEM solution. The comparison reveals that while both methods can reach high accuracy, the IGA solutions are relatively more accurate. Also, while low accuracy FEM solutions have shorter runtimes, in solutions with required higher accuracy levels, the IGA proves to be considerably faster.
Armstrong, Julian. „Anatomical optical coherence tomography in the human upper airway“. University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0022.
Der volle Inhalt der QuelleBücher zum Thema "Optical tomography"
Bernardes, Rui, und José Cunha-Vaz, Hrsg. Optical Coherence Tomography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27410-7.
Der volle Inhalt der QuelleGirach, Aniz, und Robert C. Sergott, Hrsg. Optical Coherence Tomography. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24817-2.
Der volle Inhalt der QuelleDrexler, Wolfgang, und James G. Fujimoto, Hrsg. Optical Coherence Tomography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8.
Der volle Inhalt der QuelleSaxena, Sandeep. Optical coherence tomography. New York, NY: McGraw-Hill Medical, 2008.
Den vollen Inhalt der Quelle finden1942-, Meredith Travis A., und Saxena Sandeep, Hrsg. Optical coherence tomography. New York, NY: McGraw-Hill, 2008.
Den vollen Inhalt der Quelle finden1964-, Bouma Brett E., und Tearney Guillermo J, Hrsg. Handbook of optical coherence tomography. New York: Marcel Dekker, 2002.
Den vollen Inhalt der Quelle findenAkman, Ahmet, Atilla Bayer und Kouros Nouri-Mahdavi, Hrsg. Optical Coherence Tomography in Glaucoma. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94905-5.
Der volle Inhalt der QuelleF, Steinert Roger, und Huang David, Hrsg. Anterior segment optical coherence tomography. Thorofare, NJ: SLACK, 2008.
Den vollen Inhalt der Quelle findenF, Steinert Roger, und Huang David, Hrsg. Anterior segment optical coherence tomography. Thorofare, NJ: SLACK, 2008.
Den vollen Inhalt der Quelle findenSteinert, Roger, und David Huang. Anterior Segment Optical Coherence Tomography. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003522560.
Der volle Inhalt der QuelleBuchteile zum Thema "Optical tomography"
Chen, Zhongping. „Optical Coherence Tomography and Optical Doppler Tomography“. In Encyclopedia of Microfluidics and Nanofluidics, 2529–35. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1155.
Der volle Inhalt der QuelleChen, Zhongping. „Optical Coherence Tomography and Optical Doppler Tomography“. In Encyclopedia of Microfluidics and Nanofluidics, 1–7. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1155-2.
Der volle Inhalt der QuelleFernández, Enrique Josua, und Pablo Artal. „Adaptive Optics in Ocular Optical Coherence Tomography“. In Optical Coherence Tomography, 209–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27410-7_10.
Der volle Inhalt der QuelleZhou, Xuyang, und Zhengjun Liu. „Computerized Tomography“. In Computational Optical Imaging, 101–34. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1455-1_4.
Der volle Inhalt der QuelleReif, Roberto, und Ruikang K. Wang. „Optical Microangiography Based on Optical Coherence Tomography“. In Optical Coherence Tomography, 1373–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_45.
Der volle Inhalt der QuelleSahoo, Niroj Kumar, Priya R. Chandrasekaran, Ninan Jacob und Gemmy Cheung. „Optical Coherence Tomography and Optical Coherence Tomography-Angiography“. In Ophthalmic Diagnostics, 361–85. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0138-4_28.
Der volle Inhalt der QuelleGao, Feng. „Diffuse Optical Tomography“. In Advanced Topics in Science and Technology in China, 47–184. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34303-2_3.
Der volle Inhalt der QuelleHaeussler-Sinangin, Yesim, und Thomas Kohnen. „Optical Coherence Tomography“. In Encyclopedia of Ophthalmology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35951-4_407-4.
Der volle Inhalt der QuelleNolte, David D. „Optical Coherence Tomography“. In Optical Interferometry for Biology and Medicine, 297–306. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0890-1_11.
Der volle Inhalt der QuelleTsang, Stephen H., und Tarun Sharma. „Optical Coherence Tomography“. In Advances in Experimental Medicine and Biology, 11–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95046-4_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optical tomography"
Chapman, Joseph C., Joseph M. Lukens, Bing Qi, Raphael C. Pooser und Nicholas A. Peters. „Bayesian Optical Heterodyne Tomography“. In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu5a.5.
Der volle Inhalt der QuelleBrunner, Elisabeth, Laura Kunze, Ursula Schmidt-Erfurth, Wolfgang Drexler, Andreas Pollreisz und Michael Pircher. „Focusing on anterior retinal layers with adaptive optics optical coherence tomography“. In Optical Coherence Tomography. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/oct.2024.thd1.1.
Der volle Inhalt der QuelleLin, Yuechuan, Nichaluk Leartprapun und Steven G. Adie. „High-throughput lightsheet optical manipulation and measurement with optical coherence tomography“. In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.otu1e.4.
Der volle Inhalt der QuelleWax, Adam. „Applications of Low Cost Optical Coherence Tomography“. In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om2e.2.
Der volle Inhalt der QuelleBorycki, Dawid, Egidijus Auksorius, Piotr Węgrzyn und Maciej Wojtkowski. „Digital aberration correction in spatiotemporal optical coherence (STOC) imaging with coherent averaging“. In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om2e.4.
Der volle Inhalt der QuelleSchmetterer, Leopold, Rene M. Werkmeister, Damon Wing Kee Wong, Bingyao Tan, Xinwen Yao, Jacqueline Chua und Gerhard Garhofer. „Quantitative Perfusion Measurements based on Doppler OCT and OCT Angiography“. In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om3e.1.
Der volle Inhalt der QuelleAuksorius, Egidijus, Dawid Borycki und Maciej Wojtkowski. „Crosstalk-free in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography“. In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om3e.2.
Der volle Inhalt der QuelleMujat, Mircea, Yang Lu, Gopi Maguluri, Nicusor Iftimia und R. Daniel Ferguson. „Isotropic Imaging of Retinal Structures with Multi-Channel AOSLO“. In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om3e.3.
Der volle Inhalt der QuellePark, Hyeon-Cheol, Dawei Li, Runyu Tang, Cadman L. Leggett, Kenneth K. Wang und Xingde Li. „Ex vivo Human Esophageal Tissue Imaging with Ultrahigh-resolution OCT Capsule“. In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om4e.3.
Der volle Inhalt der QuellePfister, Martin, Kornelia Schuetzenberger, Jasmin Schaefer, Hannes Stegmann, Martin Groeschl und René M. Werkmeister. „Identifying Diabetes in Mice using Optical Coherence Tomography Angiography Images of the Ears and Deep Learning“. In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om4e.4.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Optical tomography"
Xu, Min, und Melvin Lax. Time-Resolved Spectral Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, Juni 2004. http://dx.doi.org/10.21236/ada427245.
Der volle Inhalt der QuelleXu, Min, und Melvin Lax. Time-Resolved Spectral Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, Juni 2003. http://dx.doi.org/10.21236/ada418030.
Der volle Inhalt der QuelleYodh, Arjun G. Parallel, Rapid Diffuse Optical Tomography of Breast. Fort Belvoir, VA: Defense Technical Information Center, Juli 2001. http://dx.doi.org/10.21236/ada396638.
Der volle Inhalt der QuelleRaymer, Michael G. Optical Field Reconstruction Using Phase-Space Tomography. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1999. http://dx.doi.org/10.21236/ada379215.
Der volle Inhalt der QuellePiao, Daqing. Transrectal Near-Infrared Optical Tomography for Prostate Imaging. Fort Belvoir, VA: Defense Technical Information Center, März 2009. http://dx.doi.org/10.21236/ada509892.
Der volle Inhalt der QuelleAlfano, Robert R., und S. K. Gayen. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada492472.
Der volle Inhalt der QuelleAlfano, Robert R. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada464218.
Der volle Inhalt der QuelleFujimoto, James G. Advanced Technologies for Ultrahigh Resolution and Functional Optical Coherence Tomography. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada482111.
Der volle Inhalt der QuelleSuter, Melissa J. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy. Fort Belvoir, VA: Defense Technical Information Center, Juli 2014. http://dx.doi.org/10.21236/ada614445.
Der volle Inhalt der QuelleBennett, Hollis H., Goodson Jr., Curtis Ricky A. und John O. Computed-Tomography Imaging SpectroPolarimeter (CTISP) - A Passive Optical Sensor. Volume 2. Appendix B. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada399664.
Der volle Inhalt der Quelle