Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optical readout detectors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optical readout detectors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optical readout detectors"
Xie, Siwei, Zhiliang Zhu, Xi Zhang, Qiangqiang Xie, Hongsen Yu, Yibin Zhang, Jianfeng Xu und Qiyu Peng. „Optical Simulation and Experimental Assessment with Time–Walk Correction of TOF–PET Detectors with Multi-Ended Readouts“. Sensors 21, Nr. 14 (08.07.2021): 4681. http://dx.doi.org/10.3390/s21144681.
Der volle Inhalt der QuelleCools, A., S. Aune, F. M. Brunbauer, T. Benoit, A. Corsi, E. Ferrer-Ribas, F. J. Iguaz et al. „Neutron imaging with Micromegas detectors with optical readout“. EPJ Web of Conferences 288 (2023): 07009. http://dx.doi.org/10.1051/epjconf/202328807009.
Der volle Inhalt der QuelleCools, A., S. Aune, F. Beau, F. M. Brunbauer, T. Benoit, D. Desforge, E. Ferrer-Ribas et al. „X-ray imaging with Micromegas detectors with optical readout“. Journal of Instrumentation 18, Nr. 06 (01.06.2023): C06019. http://dx.doi.org/10.1088/1748-0221/18/06/c06019.
Der volle Inhalt der QuelleAmarinei, R. M., F. Sánchez, S. Bordoni, T. Lux, L. Giannessi, E. Roe und E. Radicioni. „Gaseous argon time projection chamber with electroluminescence enhanced optical readout“. Journal of Instrumentation 18, Nr. 12 (01.12.2023): P12001. http://dx.doi.org/10.1088/1748-0221/18/12/p12001.
Der volle Inhalt der QuelleTorrioli, G., M. G. Castellano, R. Leoni, F. V. Greco, R. Buonanno, F. Pedichini und P. Carelli. „DC-Squid Readout for STJ Astronomical Detectors“. International Journal of Modern Physics B 13, Nr. 09n10 (20.04.1999): 1339–44. http://dx.doi.org/10.1142/s0217979299001405.
Der volle Inhalt der QuelleAdriani, O., G. Ambrosi, G. Castellini, G. Landi und G. Passaleva. „Optical readout for double-sided silicon microstrip detectors“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 342, Nr. 1 (März 1994): 181–85. http://dx.doi.org/10.1016/0168-9002(94)91427-3.
Der volle Inhalt der QuelleBarker, G. J., P. K. Lightfoot, Y. A. Ramachers und N. J. C. Spooner. „Optical readout tracking detector concept for future large volume liquid argon detectors“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 619, Nr. 1-3 (Juli 2010): 140–42. http://dx.doi.org/10.1016/j.nima.2009.10.104.
Der volle Inhalt der QuelleLowe, Adam, Krishanu Majumdar, Konstantinos Mavrokoridis, Barney Philippou, Adam Roberts, Christos Touramanis und Jared Vann. „Optical Readout of the ARIADNE LArTPC Using a Timepix3-Based Camera“. Instruments 4, Nr. 4 (27.11.2020): 35. http://dx.doi.org/10.3390/instruments4040035.
Der volle Inhalt der QuelleBonesini, Maurizio, Roberto Bertoni, Andrea Abba, Francesco Caponio, Marco Prata und Massimo Rossella. „Improving the Time Resolution of Large-Area LaBr3:Ce Detectors with SiPM Array Readout“. Condensed Matter 8, Nr. 4 (17.11.2023): 99. http://dx.doi.org/10.3390/condmat8040099.
Der volle Inhalt der QuelleDrake, G., W. S. Fernando, R. W. Stanek und D. G. Underwood. „Modulator based high bandwidth optical readout for HEP detectors“. Journal of Instrumentation 8, Nr. 02 (12.02.2013): C02023. http://dx.doi.org/10.1088/1748-0221/8/02/c02023.
Der volle Inhalt der QuelleDissertationen zum Thema "Optical readout detectors"
Lee, Wook. „Diffraction-based integrated optical readout for micromachined optomechanical sensors“. Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-09292006-115918/.
Der volle Inhalt der QuelleF. Levent Degertekin, Committee Chair ; David S. Citrin, Committee Member ; Paul E. Hasler, Committee Member ; Peter J. Hesketh, Committee Member ; Zhiping Zhou, Committee Member.
Cools, Antoine. „Beta and neutron imaging with an optical readout Micromegas detector“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP090.
Der volle Inhalt der QuelleGaseous detectors have demonstrated, over the past decades, their high performance for imaging radioactive particles, achieving spatial resolutions below 100 µm. The scintillating properties of certain gas mixtures, combined with the significant gain of gaseous detectors and the use of a low-noise camera, have enabled the use of scintillation light for imaging. This approach allows for a large detection surface and high spatial resolution while achieving real-time imaging at a low cost per pixel, with low data analysis complexity. The main objectives of this thesis are to optimize the spatial resolution and sensitivity of the detector, either by an "event-by-event" acquisition method with short image acquisition times or by "integration" with long acquisition times.An innovative glass Micromegas detector for optical readout has been developed, taking advantage of the inherently high spatial resolution of the Micromegas detector. The adaptability of the Micromegas detector's gain, due to the avalanche amplification mechanism, allows it to cover a wide range of particle fluxes and energies. During this thesis, imaging measurements were performed using sources with radioactivity levels below one Becquerel and energies of a few keV, up to fluxes characteristic of a synchrotron and a spallation source, with energies exceeding one MeV.The light yield of the detector was studied for different gas mixtures and various gain values under X-ray irradiation to optimize the detector's sensitivity. The homogeneity and precision of the detector's response were characterized by X-ray radiography. The Point Spread Function (PSF) of the optical readout Micromegas was measured using a parallel X-ray beam a few microns thick, generated by synchrotron radiation. This measurement allowed us to determine the detector's spatial resolution for different configurations and to identify and quantify the effects involved. The impact of the micro-mesh and pillars on the detector's scintillation response was also observed and quantified.Two applications were chosen to illustrate the potential of the optical readout Micromegas: autoradiography, for the quantification of very low-activity tritiated samples and high-resolution neutron radiography in highly radioactive environments.Autoradiography and radioactive counting of low-energy beta radiation were performed with tritiated glucose samples. Activities below one Becquerel were measured accurately and simultaneously on a large number of samples, while ensuring precise reconstruction of their position. This work validates the possibility of quantifying the concentration of anticancer drugs at the scale of single tumor cells.Finally, the use of the optical readout Micromegas for neutron imaging was demonstrated using a spallation source which produces thermal neutrons with a flux of approximately 10⁸ n. s⁻¹cm⁻ ² mA⁻¹. The uniformity of the detector's response was studied, and the effects of the diffusion and the mean free path of particles in the gas on image sharpness were measured and compared to a simulation. A spatial resolution on the order of 400 µm was achieved using double-stage amplification within the Micromegas detector
Troska, Jan Kevin. „Radiation-hard optoelectronic data transfer for the CMS tracker“. Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313621.
Der volle Inhalt der QuelleTripp, Everett. „Interferometric Optical Readout System for a MEMS Infrared Imaging Detector“. Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/222.
Der volle Inhalt der QuelleMcConkey, Nicola. „Detector development for a neutrino detector with combined optical and charge readout in room temperature liquids“. Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/69105/.
Der volle Inhalt der QuelleJeffery, D. R. N. „Test of a GS1 scintillating optical fibre vertex detector with a reticon RA256 photodiode array readout“. Thesis, University of Bristol, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381373.
Der volle Inhalt der QuelleCervelli, Giovanni. „Analyse, caractérisation et optimisation d'une liaison optique analogique pour l'extraction des données d'un détecteur de particules“. Grenoble INPG, 1999. http://www.theses.fr/1999INPG0032.
Der volle Inhalt der QuelleFlick, Tobias. „Studies on the optical readout for the ATLAS Pixel Detector systematical studies on the functions of the back of crate card and the timing of the Pixel Detector /“. [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=982435762.
Der volle Inhalt der QuelleDopke, Jens [Verfasser]. „Commissioning of the ATLAS Pixel Detector optical data transmission and studies for readout of the ATLAS IBL and future trackers / Jens Dopke“. Wuppertal : Universitätsbibliothek Wuppertal, 2012. http://d-nb.info/1024305066/34.
Der volle Inhalt der QuelleGardner, James Walter. „Improving future gravitational-wave detectors using nondegenerate internal squeezing“. Thesis, 2021. http://hdl.handle.net/1885/256029.
Der volle Inhalt der QuelleBücher zum Thema "Optical readout detectors"
Webster, Kenneth Andrew. Investigation of the use of optical modulators for analogue data readout from particle physics detectors. Birmingham: University of Birmingham, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Optical readout detectors"
Schmidt, Ricardo E. „On the Optimization of CCD Readout Noise“. In Optical Detectors for Astronomy, 245–50. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5262-4_38.
Der volle Inhalt der QuelleSmith, Roger M. „Readout Speed Optimization for Conventional CCDs Employing Dual Slope Integration for Double Correlated Sampling“. In Optical Detectors for Astronomy, 165–84. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5262-4_27.
Der volle Inhalt der QuelleZanetto, Francesco. „Low-Noise Mixed-Signal Electronics for Closed-Loop Control of Complex Photonic Circuits“. In Special Topics in Information Technology, 55–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_5.
Der volle Inhalt der QuelleUjiie, Norihiko, Hirokazu Ikeda und Yoshinobu Unno. „A New Concept of Multiplexed Optical Transmission Readout Scheme for a Silicon Strip Detector“. In Supercollider 4, 583–90. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3454-9_72.
Der volle Inhalt der Quelle„Optical Readout Noise“. In Fundamentals of Interferometric Gravitational Wave Detectors, 71–83. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813146198_0005.
Der volle Inhalt der Quelle„OPTICAL READOUT NOISE“. In Fundamentals of Interferometric Gravitational Wave Detectors, 71–83. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814350235_0005.
Der volle Inhalt der QuelleSong, Hai-Zhi, Qiang Zhou, Guangwei Deng, Qian Dai, Zichang Zhang und You Wang. „Optoelectronic Devices for Quantum Information Processing“. In Optoelectronics - Recent Advances [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002676.
Der volle Inhalt der QuelleRavindra, Nuggehalli. „Optical and thermal detector fundamentals, microbolometer, and readout integrated circuits“. In Microbolometers, 133–55. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-08-102812-4.00006-1.
Der volle Inhalt der QuelleDOMINIK, W., N. ZAGANIDIS, P. ASTIER, G. CHARPAK, J. C. SANTIARD, F. SAULI, E. TRIBOLLET, A. GEISSBÜHLER und D. TOWNSEND. „A GASEOUS DETECTOR FOR HIGH-ACCURACY AUTORADIOGRAPHY OF RADIOACTIVE COMPOUNDS WITH OPTICAL READOUT OF AVALANCHE POSITIONS“. In World Scientific Series in 20th Century Physics, 634–42. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812795878_0083.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optical readout detectors"
Chattopadhyay, Tanmoy, Sven C. Herrmann, Peter Orel, Kevan Donlon, Steven W. Allen, Marshall W. Bautz, Brianna J. Cantrall et al. „Demonstrating sub-electron noise performance in single electron sensitive readout (SiSeRO) devices“. In X-Ray, Optical, and Infrared Detectors for Astronomy XI, herausgegeben von Andrew D. Holland und Kyriaki Minoglou, 57. SPIE, 2024. http://dx.doi.org/10.1117/12.3020855.
Der volle Inhalt der QuelleBotti, Ana M., Brenda A. Cervantes Vergara, Claudio R. Chavez Blanco, Fernando Chierchie, Alex Drlica-Wagner, Juan Estrada, Guillermo Fernandez Moroni et al. „Readout optimization of multi-amplifier sensing charge-coupled devices for single-quantum measurement“. In X-Ray, Optical, and Infrared Detectors for Astronomy XI, herausgegeben von Andrew D. Holland und Kyriaki Minoglou, 54. SPIE, 2024. http://dx.doi.org/10.1117/12.3019411.
Der volle Inhalt der QuelleFinger, Gert, Frank Eisenhauer, Jörg Stegmeier, Ian Baker und Vincent Isgar. „Multiple nondestructive readout strategy to improve the signal-to-noise ratio of faint exposures with infrared arrays“. In X-Ray, Optical, and Infrared Detectors for Astronomy XI, herausgegeben von Andrew D. Holland und Kyriaki Minoglou, 134. SPIE, 2024. http://dx.doi.org/10.1117/12.3033599.
Der volle Inhalt der QuelleMüller, Maurice, Andreas Bablich, Rainer Bornemann, Nils Marrenbach, Paul Kienitz und Peter Haring Bolívar. „Optical Ranging – The Amorphous Silicon Intrinsic Photomixing Detector“. In CLEO: Applications and Technology, AF2E.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.af2e.7.
Der volle Inhalt der QuelleBilki, B. „Development of Resistive Plate Chambers with Optical Readout“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10657153.
Der volle Inhalt der QuelleDatskos, Panos G., Slobodan Rajic, Larry R. Senesac, Dennis D. Earl, Boyd M. Evans III, James L. Corbeil und Irene Datskou. „Optical readout of uncooled thermal detectors“. In International Symposium on Optical Science and Technology, herausgegeben von Bjorn F. Andresen, Gabor F. Fulop und Marija Strojnik. SPIE, 2000. http://dx.doi.org/10.1117/12.409842.
Der volle Inhalt der QuelleNarita, Tomohiko, Jonathan E. Grindlay, Jaesub Hong und Francis C. Niestemski. „Anode readout for pixellated CZT detectors“. In Optical Science and Technology, SPIE's 48th Annual Meeting. SPIE, 2004. http://dx.doi.org/10.1117/12.506552.
Der volle Inhalt der QuelleHutchinson, Donald P., Roger K. Richards, L. Curt Maxey, Ronald G. Cooper und David E. Holcomb. „Optical readout for imaging neutron scintillation detectors“. In International Symposium on Optical Science and Technology, herausgegeben von Ian S. Anderson und Bruno Gurard. SPIE, 2002. http://dx.doi.org/10.1117/12.451682.
Der volle Inhalt der QuelleDe Geronimo, Gianluigi, Paul O'Connor, Anand Kandasamy und Joe Grosholz. „Advanced-readout ASICs for multielement CdZnTe detectors“. In International Symposium on Optical Science and Technology, herausgegeben von Ralph B. James, Larry A. Franks, Arnold Burger, Edwin M. Westbrook und Roger D. Durst. SPIE, 2003. http://dx.doi.org/10.1117/12.455775.
Der volle Inhalt der QuelleCruz de la Torre, Carlos, und Juan de Vicente Albendea. „Digital correlated double sampling CCD readout characterization“. In High Energy, Optical, and Infrared Detectors for Astronomy VIII, herausgegeben von Andrew D. Holland und James Beletic. SPIE, 2018. http://dx.doi.org/10.1117/12.2312498.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Optical readout detectors"
Vergara Limon, M. C. Sergio. Design and Performance Characteristics of the Optical Readout and Control Interface for the BTeV Pixel Vertex Detector. Office of Scientific and Technical Information (OSTI), Januar 2000. http://dx.doi.org/10.2172/1421427.
Der volle Inhalt der Quelle