Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optical properties of snow“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optical properties of snow" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optical properties of snow"
Pomeroy, J. W., und D. H. Male. „Optical Properties of Blowing Snow“. Journal of Glaciology 34, Nr. 116 (1988): 3–10. http://dx.doi.org/10.1017/s0022143000008996.
Der volle Inhalt der QuellePomeroy, J. W., und D. H. Male. „Optical Properties of Blowing Snow“. Journal of Glaciology 34, Nr. 116 (1988): 3–10. http://dx.doi.org/10.3189/s0022143000008996.
Der volle Inhalt der QuelleSergent, Claude, Evelyne Pougatch, Marcel Sudul und Barbara Bourdelles. „Experimental investigation of optical snow properties“. Annals of Glaciology 17 (1993): 281–87. http://dx.doi.org/10.1017/s0260305500012970.
Der volle Inhalt der QuelleSergent, Claude, Evelyne Pougatch, Marcel Sudul und Barbara Bourdelles. „Experimental investigation of optical snow properties“. Annals of Glaciology 17 (1993): 281–87. http://dx.doi.org/10.3189/s0260305500012970.
Der volle Inhalt der QuelleWarren, Stephen G. „Optical properties of ice and snow“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, Nr. 2146 (15.04.2019): 20180161. http://dx.doi.org/10.1098/rsta.2018.0161.
Der volle Inhalt der QuelleKaasalainen, S., M. Kaasalainen, T. Mielonen, J. Suomalainen, J. I. Peltoniemi und J. Näränen. „Optical properties of snow in backscatter“. Journal of Glaciology 52, Nr. 179 (2006): 574–84. http://dx.doi.org/10.3189/172756506781828421.
Der volle Inhalt der QuelleSaito, Masanori, Ping Yang, Norman G. Loeb und Seiji Kato. „A Novel Parameterization of Snow Albedo Based on a Two-Layer Snow Model with a Mixture of Grain Habits“. Journal of the Atmospheric Sciences 76, Nr. 5 (01.05.2019): 1419–36. http://dx.doi.org/10.1175/jas-d-18-0308.1.
Der volle Inhalt der QuelleBeres, Nicholas D., Deep Sengupta, Vera Samburova, Andrey Y. Khlystov und Hans Moosmüller. „Deposition of brown carbon onto snow: changes in snow optical and radiative properties“. Atmospheric Chemistry and Physics 20, Nr. 10 (26.05.2020): 6095–114. http://dx.doi.org/10.5194/acp-20-6095-2020.
Der volle Inhalt der QuelleLamare, M. L., J. Lee-Taylor und M. D. King. „The impact of atmospheric mineral aerosol deposition on the albedo of snow and sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?“ Atmospheric Chemistry and Physics Discussions 15, Nr. 16 (27.08.2015): 23131–72. http://dx.doi.org/10.5194/acpd-15-23131-2015.
Der volle Inhalt der QuelleFrance, J. L., M. D. King, M. M. Frey, J. Erbland, G. Picard, A. MacArthur und J. Savarino. „Snow optical properties at Dome C, Antarctica – implications for snow emissions and snow chemistry of reactive nitrogen“. Atmospheric Chemistry and Physics Discussions 11, Nr. 4 (18.04.2011): 11959–93. http://dx.doi.org/10.5194/acpd-11-11959-2011.
Der volle Inhalt der QuelleDissertationen zum Thema "Optical properties of snow"
Gergely, Mathias [Verfasser], und Kurt [Akademischer Betreuer] Roth. „Snow Characterization by Optical Properties / Mathias Gergely ; Akademischer Betreuer: Kurt Roth“. Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1180067789/34.
Der volle Inhalt der QuelleReay, Holly J. „Optical properties of snow and sea-ice : a field and modelling study“. Thesis, Royal Holloway, University of London, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.594224.
Der volle Inhalt der QuelleChukir, Patrik. „Realistické zobrazování sněhu“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445479.
Der volle Inhalt der QuelleCanestraro, Carla Daniele. „Electrical and optical properties of thin film SnO₂ and SnO₂:F : transparent electrodes in organic photovoltiaics /“. Stockholm : Materials Science and Engineering (Materialvetenskap), Kungliga Tekniskan högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4832.
Der volle Inhalt der QuelleCarmagnola, Carlo Maria. „Mesure, analyse et modélisation des processus physiques du manteau neigeux sec Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack“. Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU014.
Der volle Inhalt der QuelleSnow is a porous medium whose microstructure is constantly subjected to morphological transformations. These transformations, which take the name of ``metamorphism", are likely to affect the thermal, mechanical and electromagnetic properties of snow at the macroscopic level. Specifically, the exchange of energy and matter within the snowpack and between the snow and the atmosphere above are strongly impacted by the evolution over time of the snow microstructure. Therefore, an adequate representation of metamorphism in snowpack models is crucial. The microstructure of a porous medium can be reasonably described using a reduced number of variables. Indeed, the density, the specific surface area (SSA) and the curvature distribution are able to characterize the microstructure of such a material. However, in the case of snow this approach is still in its infancy and has not yet been systematically applied. Semi-empirical variables, difficult to measure and not directly linked to other relevant physical properties, are still widely used in so-called detailed snowpack models. This work contributes to the attempt to represent the state of the snow using well-defined and easily measurable microstructural variables. Among these variables, we focused particularly on the SSA, which is a key quantity for the study of snow and its temporal evolution. Different evolution laws of SSA were studied, starting from empirical relationships based on experimental data adjustments to physical models that represent the flow of water vapor between snow grains. These laws were initially tested using a simplified snowpack model and then introduced directly into the SURFEX/ISBA-Crocus snowpack model. To this end, the SSA in Crocus was turned into a prognostic variable, replacing other preexisting semi-empirical variables. The different formulations of the temporal evolution of the SSA were compared with field measurements, acquired during two campaigns at Summit (Greenland) and the Col de Porte (France). These measurements were carried out using new optical techniques and yielded a rich dataset with high vertical resolution. The results show that the different formulations are comparable and reproduce well the observations, with an average root-mean-square deviation value between simulated and measured SSA lower than 10 m^/kg. Finally, we contributed to bridge the gap between snow microstructure and macroscopic properties. In particular, we investigated the link between the SSA on the one hand and the mechanical and optical properties on the other hand. In the first case, we investigated the correlation between the SSA and the penetration resistance measured with a Snow Micro Pen (SMP). The preliminary results suggest that the SSA can be retrieved from the snow density and the micro-mechanical parameters estimated from the SMP signal using a statistical model. In the second case, we simulated the surface albedo at Summit from the measured profiles of density, SSA and impurities within the snowpack. The results of this study showed that the spectral albedo can be simulated successfully using a radiative transfer model and the energy absorbed by the snowpack can be estimated with a good accuracy (about 1%)
Lintzén, Nina. „Mechanical properties of artificial snow“. Licentiate thesis, Luleå tekniska universitet, Geoteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-16798.
Der volle Inhalt der QuelleGodkänd; 2013; 20131002 (ninlin); Tillkännagivande licentiatseminarium 2013-10-23 Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Nina Lintzén Ämne: Geoteknik/Soil Mechanics and Foundation Engineering Uppsats: Mechanical Properties of Artificial Snow Examinator: Professor Sven Knutsson, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Tekn. lic. Lars Vikström, LKAB, Luleå Tid: Fredag den 15 november 2013 kl 10.00 Plats: F1031, Luleå tekniska universitet
Bourgeois, C. Saskia. „The radiative properties of snow at Summit, Greenland /“. Zürich : ETH, 2006. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16758.
Der volle Inhalt der QuelleWooldridge, Robyn Elaine. „The effects of explosives on the physical properties of snow“. Thesis, Montana State University, 2013. http://etd.lib.montana.edu/etd/2013/wooldridge/WooldridgeR0513.pdf.
Der volle Inhalt der QuelleLampkin, Derrick Julius. „Optical Remote Sensing for Monitoring Evolution of Ablation Season Mountain Snow Cover“. Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1120%5F1%5Fm.pdf&type=application/pdf.
Der volle Inhalt der QuelleCuthill, Fergus. „The influence of snow microstructure and properties on the grip of winter tyres“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29534.
Der volle Inhalt der QuelleBücher zum Thema "Optical properties of snow"
Norn, Mogens S. Eskimo snow goggles in Danish and Greenlandic Museums, their protective and optical properties. Copenhagen: Kommissionen for Videnskabelige Undersøgelser i Grønland, 1996.
Den vollen Inhalt der Quelle findenWarren, Stephen G. Optical properties of CO ́ice and CO ́snow in the ultraviolet, visible, and infrared: Final report on NASA grant NAGW-1734. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle finden1975-, Qiu Min, Hrsg. Optical properties of nanostructures. Singapore: Pan Stanford, 2011.
Den vollen Inhalt der Quelle findenJan, Vlieger, Hrsg. Optical properties of surfaces. London: Imperial College Press, 2002.
Den vollen Inhalt der Quelle findenMartinez, G., Hrsg. Optical Properties of Semiconductors. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8075-5.
Der volle Inhalt der QuelleZaitsev, Alexander M. Optical Properties of Diamond. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04548-0.
Der volle Inhalt der QuelleKlingshirn, C., Hrsg. Optical Properties. Part 2. Berlin/Heidelberg: Springer-Verlag, 2004. http://dx.doi.org/10.1007/b98078.
Der volle Inhalt der QuelleKasper, E., und C. Klingshirn, Hrsg. Optical Properties. Part 3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-47055-7.
Der volle Inhalt der QuelleKlingshirn, C., Hrsg. Optical Properties. Part 1. Berlin/Heidelberg: Springer-Verlag, 2001. http://dx.doi.org/10.1007/b55683.
Der volle Inhalt der QuelleOptical properties of solids. 2. Aufl. Oxford: Oxford University Press, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Optical properties of snow"
Cook, Joseph, Mark Flanner, Christopher Williamson und S. McKenzie Skiles. „Bio-optical Properties of Terrestrial Snow and Ice“. In Springer Series in Light Scattering, 129–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20587-4_3.
Der volle Inhalt der QuelleHall, Dorothy K., und Jaroslav Martinec. „An introduction to the optical, thermal and electrical properties of ice and snow“. In Remote Sensing of Ice and Snow, 1–9. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4842-6_1.
Der volle Inhalt der QuellePerovich, D. K. „Ultraviolet Radiation and the Optical Properties of Sea Ice and Snow“. In Ecological Studies, 73–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56075-0_4.
Der volle Inhalt der QuelleSingh, Ravi Chand, Gurpreet Singh und Anita Hastir. „Structural and Optical Properties of Dysprosium-Doped SnO2 Nanocrystals and Their LPG-Sensing Behavior“. In Processing and Properties of Advanced Ceramics and Composites VII, 349–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119183860.ch33.
Der volle Inhalt der QuelleSingh, Gurwinder Pal, Navneet Kaur, Abhinav, Sacheen Kumar und Dinesh Kumar. „Effect of Dopant Concentration on Structural and Optical Properties of Cu Doped SnO2“. In Springer Proceedings in Physics, 111–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29096-6_14.
Der volle Inhalt der QuelleLanger, Michael S., und Richard Mann. „Tracking through Optical Snow“. In Biologically Motivated Computer Vision, 181–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36181-2_18.
Der volle Inhalt der QuelleFang, L. M., und Xiao Tao Zu. „Microstructure and Optical Properties of Fe-Doped SnO2 Nanoparticles Synthesized by Hydrothermal Method“. In Advanced Materials Research, 683–86. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-463-4.683.
Der volle Inhalt der QuelleBoumezoued, A., K. Guergouri, C. Azizi, A. Aberkane und A. Khial. „Investigation of Structural, Optical and Electrical Properties of Al Doped SnO2 Thin Films Synthesized by Sol-Gel“. In Proceedings of the Third International Symposium on Materials and Sustainable Development, 3–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89707-3_1.
Der volle Inhalt der QuelleDomine, Florent. „Physical Properties of Snow“. In Encyclopedia of Earth Sciences Series, 859–63. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_422.
Der volle Inhalt der QuelleBenkara, S., H. Ghamri und M. Zaabat. „Study of Structural, Morphological and Optical, Properties of Fe Doped SnO2 Semiconductor Thin Films Prepared by Sol-Gel Technique“. In Proceedings of the Third International Symposium on Materials and Sustainable Development, 676–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89707-3_71.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optical properties of snow"
Perovich, Donald K., Gary A. Maykut und Thomas C. Grenfell. „Optical Properties Of Ice And Snow In The Polar Oceans. I: Observations“. In 1986 Technical Symposium Southeast, herausgegeben von Marvin A. Blizard. SPIE, 1986. http://dx.doi.org/10.1117/12.964238.
Der volle Inhalt der QuelleGrenfell, Thomas C., und Donald K. Perovich. „Optical Properties Of Ice And Snow In The Polar Oceans. II: Theoretical Calculations“. In 1986 Technical Symposium Southeast, herausgegeben von Marvin A. Blizard. SPIE, 1986. http://dx.doi.org/10.1117/12.964239.
Der volle Inhalt der QuelleKoshy, Jiji, Anoop Chandran, Soosen Samuel und K. C. George. „Optical properties of SnO2 nanoparticles“. In LIGHT AND ITS INTERACTIONS WITH MATTER. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4898239.
Der volle Inhalt der QuelleSohila, S., M. Rajalakshmi, C. Muthamizhchelvan und S. Kalavathi. „Optical properties of Fe-doped SnO2 nanoparticles“. In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4709974.
Der volle Inhalt der QuelleLiao, Bo-Huei, Cheng-Chung Lee, Chien-Cheng Kuo und Ping-Zen Chen. „Enhancing the Optical and Electrical Properties of SnO2 Films by Plasma Etching Deposition“. In Optical Interference Coatings. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/oic.2010.mc5.
Der volle Inhalt der QuelleChing-Prado, Eleicer, Hector Miranda und Amanda Watson. „Optical Properties of SnO2 and SnO2:F - An Experimental and Theoretical Approach“. In 2019 7th International Engineering, Sciences and Technology Conference (IESTEC). IEEE, 2019. http://dx.doi.org/10.1109/iestec46403.2019.00026.
Der volle Inhalt der QuelleAhmad, Naseem, Shakeel Khan, Richa Bhargava und Mohd Mohsin Nizam Ansari. „Study of lattice strain and optical properties of nanocrystalline SnO2“. In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032398.
Der volle Inhalt der QuelleXing, Dan-Xu, Pei-Ji Wang und Chang-Wen Zhang. „The Electronic Structures and Optical Properties in Nitrogen-Doped SnO2“. In 4th 2016 International Conference on Material Science and Engineering (ICMSE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmse-16.2016.92.
Der volle Inhalt der QuelleStjerna, B. A., und Claes-Goeran Granqvist. „Optical and electrical properties of doped rf-sputtered SnOx films“. In Optical Materials Technology for Energy Efficiency and Solar Energy, herausgegeben von Anne Hugot-Le Goff, Claes-Goeran Granqvist und Carl M. Lampert. SPIE, 1992. http://dx.doi.org/10.1117/12.130505.
Der volle Inhalt der QuelleSaipriya, S., und R. Singh. „Optical properties of (SnO[sub 2]∕Cu-Zn ferrite) multilayers“. In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791194.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Optical properties of snow"
Roesler, Collin S. Particulate Optical Closure: Reconciling Optical Properties of Individual Particles with Bulk Optical Properties. Fort Belvoir, VA: Defense Technical Information Center, Januar 1995. http://dx.doi.org/10.21236/ada300437.
Der volle Inhalt der QuelleSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/7027281.
Der volle Inhalt der QuelleSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), Juli 1989. http://dx.doi.org/10.2172/7069542.
Der volle Inhalt der QuelleSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5601114.
Der volle Inhalt der QuelleKlepfer, Robert O., Madarasz III und Frank L. Excitonic Nonlinear Optical Properties. Fort Belvoir, VA: Defense Technical Information Center, Juni 1996. http://dx.doi.org/10.21236/ada311109.
Der volle Inhalt der QuelleSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), Oktober 1990. http://dx.doi.org/10.2172/6164447.
Der volle Inhalt der QuelleSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5127564.
Der volle Inhalt der QuelleSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5991403.
Der volle Inhalt der QuelleSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/7245066.
Der volle Inhalt der QuelleVaughn, James, William M. Balch und James Novotny. Optical Properties of Viruses. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628528.
Der volle Inhalt der Quelle