Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optical polarization and confocal laser microscopy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optical polarization and confocal laser microscopy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optical polarization and confocal laser microscopy"
Turner, JN, DH Szarowski, DP Barnard, JS Deitch, JW Swann und K. Smith. „Confocal laser scanned microscopy: Optimized reflection mode“. Proceedings, annual meeting, Electron Microscopy Society of America 47 (06.08.1989): 142–43. http://dx.doi.org/10.1017/s0424820100152689.
Der volle Inhalt der QuelleLakkakorpi, J. T., und H. J. Rajaniemi. „Application of the immunofluorescence technique and confocal laser scanning microscopy for studying the distribution of the luteinizing hormone/chorionic gonadotropin (LH/CG) receptor on rat luteal cells.“ Journal of Histochemistry & Cytochemistry 39, Nr. 4 (April 1991): 397–400. http://dx.doi.org/10.1177/39.4.2005369.
Der volle Inhalt der QuelleCampagnola, P. J., und L. M. Loew. „Second Harmonic Generation Imaging (SHG) in the Non-Linear Optical Microscopy of Living Cells“. Microscopy and Microanalysis 4, S2 (Juli 1998): 414–15. http://dx.doi.org/10.1017/s1431927600022194.
Der volle Inhalt der QuelleHe, Yaling, Xiaomin Wang, Jie Hu, Qiang Zhou und Hui Chen. „Effect of Cu content on exfoliation corrosion and electrochemical corrosion of A7N01 aluminum alloy in EXCO solution“. International Journal of Modern Physics B 31, Nr. 16-19 (26.07.2017): 1744005. http://dx.doi.org/10.1142/s0217979217440052.
Der volle Inhalt der QuelleStremplewski, Patrycjusz, Maciej Nowakowski, Dawid Borycki und Maciej Wojtkowski. „Fast method of speckle suppression for reflection phase microscopy“. Photonics Letters of Poland 10, Nr. 4 (31.12.2018): 118. http://dx.doi.org/10.4302/plp.v10i4.850.
Der volle Inhalt der QuelleXie, Xiang, Ju Tan, Dangheng Wei, Daoxi Lei, Tieying Yin, Junli Huang, Xiaojuan Zhang, Juhui Qiu, Chaojun Tang und Guixue Wang. „In vitro and in vivo investigations on the effects of low-density lipoprotein concentration polarization and haemodynamics on atherosclerotic localization in rabbit and zebrafish“. Journal of The Royal Society Interface 10, Nr. 82 (06.05.2013): 20121053. http://dx.doi.org/10.1098/rsif.2012.1053.
Der volle Inhalt der QuelleŁosiewicz, Bożena, Patrycja Osak, Joanna Maszybrocka, Julian Kubisztal und Sebastian Stach. „Effect of Autoclaving Time on Corrosion Resistance of Sandblasted Ti G4 in Artificial Saliva“. Materials 13, Nr. 18 (18.09.2020): 4154. http://dx.doi.org/10.3390/ma13184154.
Der volle Inhalt der QuelleOhkubo, Shinya. „Development of Birefringence Confocal Laser Scanning Microscope and its Application to Sample Measurements“. Journal of Robotics and Mechatronics 31, Nr. 6 (20.12.2019): 926–33. http://dx.doi.org/10.20965/jrm.2019.p0926.
Der volle Inhalt der QuelleSteinbach, Gábor, István Pomozi, Ottó Zsiros, László Menczel und Győző Garab. „Imaging anisotropy using differential polarization laser scanning confocal microscopy“. Acta Histochemica 111, Nr. 4 (Juli 2009): 317–26. http://dx.doi.org/10.1016/j.acthis.2008.11.021.
Der volle Inhalt der QuelleTurner, JN, DP Barnard, DH Szarowski, JW Swann und K. Smith. „Confocal laser scanned microscopy: Analog preprocessing“. Proceedings, annual meeting, Electron Microscopy Society of America 47 (06.08.1989): 150–51. http://dx.doi.org/10.1017/s0424820100152720.
Der volle Inhalt der QuelleDissertationen zum Thema "Optical polarization and confocal laser microscopy"
Yildiz, Bilge Can. „Imaging Of Metal Surfaces Using Confocal Laser Scanning Microscopy“. Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613641/index.pdf.
Der volle Inhalt der QuelleEsposito, Elric. „Nonlinear optical frequency conversion based soures for improved confocal laser scanning microscopy“. Thesis, University of Strathclyde, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510907.
Der volle Inhalt der QuelleČervený, Ľuboš. „Kinetika neizotermické krystalizace polylaktidu s přídavkem vybraných činidel“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444212.
Der volle Inhalt der QuellePowell, Rock Allen. „On-line depth measurement of micro-scale laser drilled holes“. Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Powell_09007dcc806b6dfc.pdf.
Der volle Inhalt der QuelleVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed August 14, 2009) Includes bibliographical references (p. 16-17).
Sheikh, Mumtaz. „SILICON CARBIDE AND AGILE OPTICS BASED SENSORS FOR POWER PLANT GAS TURBINES, LASER BEAM ANALYSIS AND BIOMEDICINE“. Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2207.
Der volle Inhalt der QuellePh.D.
Optics and Photonics
Optics and Photonics
Optics PhD
CHEN, WEIBIN. „Focus Engineering with Spatially Variant Polarization for Nanometer Scale Applications“. University of Dayton / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1259871061.
Der volle Inhalt der QuelleLe, Gratiet Aymeric. „Développement d'un polarimètre de Mueller à codage spectral utilisant une Swept-source : application à la microscopie à balayage laser“. Thesis, Brest, 2016. http://www.theses.fr/2016BRES0120/document.
Der volle Inhalt der QuelleMueller polarimetry is an optical technique allowing the acquisition of the full polarimetric signature of a medium with a single Mueller matrix, and leading to its polarimetric parameters such as dichroism, birefringence and depolarization. Coupling Mueller polarimetry with nonlinear microscopy techniques (SHG for example), more precise information about the medium could be obtained (structure, organization . . .). This imaging technique uses a laser scanning system to measure the Mueller matrix of a medium point-to-point quickly (of the order of the microsecond). The aim of this thesis is to develop a Mueller polarimeter compatible with the laser scanning system. First, a new Mueller polarimeter is proposed using spectral encoding of the polarization and measuring the full polarimetric signature of a sample with a single channeled spectrum in a fast way (10 μs). This setup is composed of a 100 kHz swept-source laser, high order retarders and a single channel detector. Systematic errors on the Mueller matrix measurement are evaluated and correction methods take into account these errors in a calibration step that uses polarimetric signature of two references medium. Then, the polarimeter is implemented on a commercial laser scanning microscope that usually images non-linear contrasts (SHG). The update needs to reduce the dimension of the polarimeter and ensure an electronic synchronization between these two systems. However, a new calibration step is proposed and takes into account all the systematic errors of the polarimeter, independently of the optical anisotropy induced by the microscope. Finally, the images with the first Mueller scanning microscope are obtained with spatially inhomogeneous samples (cellophane tapes, rocks). The potentiality of the multimodal scanning microscopy Mueller/SHG on the same instrument is demonstrated in the case of hepatic fibrosis
Bibikova, O. (Olga). „Plasmon-resonant gold nanoparticles for bioimaging and sensing applications“. Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526219974.
Der volle Inhalt der QuelleTiivistelmä Tämä opinnäytetyö kertoo tutkimuksista, joissa plasmoninanopartikkeleita ja erityisesti kultananotähtiä on käytetty signaalinvahvistimina biofotoniikan sovelluksissa, kuten visualisointi, elävien solujen käsittely ja kemiallinen tunnistus. Tässä työssä verrattiin eri kokoisten ja muotoisten nanopartikkeleiden ja niiden piioksidikomposiittien optisia ominaisuuksia. Sopivimpina plasmoninanorakenteina kultananotähtiä käytettiin optisiin kuvantamismenetelmiin, kuten konfokaalimikroskopiaan ja Doppler-optiseen koherenssitomografiaan. Lisäksi kuvattiin myös kultananopartikkelien kykyä parantaa pinta-aktivoidun värähtelevän spektroskopian signaalia, mukaan lukien Raman- ja Fourier-muunnos-infrapuna-spektroskopia. Lopuksi, eri kultananopartikkeleita käytettiin soluoptoporaatioon eksogeenisten aineiden läpäisevyyden lisäämiseksi. Yhteenvetona, työssä osoitettiin nanotähtien merkittävät edut, kuten matala-myrkyllisyys, suuret sironta- ja kontrastiominaisuudet, laaja plasmoniresonanssin aallonpituusalue ja sen viritettävyys, sekä kyky parantaa analyyttimolekyylien signaalia värähtelyspektroskopiassa. Niinpä tutkimustulokset nanotähtien tehokkuudesta ovat laajasti käyttökelpoisia ja ne avaavat laajan näkökulman niiden hyödyntämiseen nanobiofotoniikassa ja biolääketieteessä
Khan, Sajjad. „Liquid Crystal Optics for Communications, Signal Processing and 3-D Microscopic Imaging“. Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3389.
Der volle Inhalt der QuellePh.D.
Optics and Photonics
Optics
Chen, Cheng-Chi, und 陳政吉. „Study of Optical Characteristics of Nanostructure Thin Films Using Confocal Laser Scanning Microscopy“. Thesis, 2004. http://ndltd.ncl.edu.tw/handle/69877780015809429452.
Der volle Inhalt der Quelle國立臺灣大學
光電工程學研究所
92
In this thesis, we study of optical characteristics of AgOx nanostructure thin films with different thickness on the glass substrate using confocal laser scanning microscope and use surface plasmon properties to explain all the optical phenomenon of confocal images. Finally, we demonstrate successfully that the strong evanescence field resulting from surface plasmon resonance of AgOx nanostructure thin films will enhance the lateral resolution of the confocal microscope in the near field. Also, we observe that surface plasmon resonance will interrupt by objects in the near field.
Buchteile zum Thema "Optical polarization and confocal laser microscopy"
Masters, Barry R. „Confocal Laser Scanning Microscopy“. In Handbook of Coherent Domain Optical Methods, 895–947. New York, NY: Springer US, 2004. http://dx.doi.org/10.1007/0-387-29989-0_21.
Der volle Inhalt der QuellePaddock, Stephen W., und Kevin W. Eliceiri. „Laser Scanning Confocal Microscopy: History, Applications, and Related Optical Sectioning Techniques“. In Confocal Microscopy, 9–47. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-60761-847-8_2.
Der volle Inhalt der QuelleStelzer, Ernst H. K. „The Intermediate Optical System of Laser-Scanning Confocal Microscopes“. In Handbook Of Biological Confocal Microscopy, 207–20. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_9.
Der volle Inhalt der QuelleStelzer, Ernst H. K. „The Intermediate Optical System of Laser-Scanning Confocal Microscopes“. In Handbook of Biological Confocal Microscopy, 139–54. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-5348-6_9.
Der volle Inhalt der QuelleStelzer, Ernst H. K. „The Intermediate Optical System of Laser-scanning Confocal Microscopes“. In Handbook of Biological Confocal Microscopy, 93–103. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-7133-9_9.
Der volle Inhalt der QuelleJacques, Steven L. „Confocal Laser Scanning Microscopy Using Scattering as the Contrast Mechanism“. In Handbook of Coherent-Domain Optical Methods, 1157–71. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5176-1_28.
Der volle Inhalt der QuelleNeerken, Sieglinde, Gerald W. Lucassen, Tom A. M. Nuijs, Egbert Lenderink und Rob F. M. Hendriks. „Comparison of Confocal Laser Scanning Microscopy and Optical Coherence Tomography“. In Handbook of Coherent Domain Optical Methods, 949–71. New York, NY: Springer US, 2004. http://dx.doi.org/10.1007/0-387-29989-0_22.
Der volle Inhalt der QuelleLemasters, John J., Enrique Chacon, George Zahrebelski, Jeffrey M. Reece und Anna-Liisa Nieminen. „LASER SCANNING CONFOCAL MICROSCOPY OF LIVING CELLS“. In Optical Microscopy, 339–54. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-08-057139-3.50016-8.
Der volle Inhalt der QuelleKiziltoprak, Hasan, Dilara Ozkoyuncu, Kemal Tekin und Mustafa Koc. „Confocal Scanning Laser Microscopy in Medicine“. In Biomedical Signal and Image Processing. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96771.
Der volle Inhalt der QuelleKrishnan, Kannan M. „Optics, Optical Methods, and Microscopy“. In Principles of Materials Characterization and Metrology, 345–407. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optical polarization and confocal laser microscopy"
Zinser, G., R. W. Wijnaendts-van-Resandt und C. Ihriq. „Confocal Laser Scanning Microscopy For Ophthalmology“. In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950326.
Der volle Inhalt der QuelleTomáštík, Jan, Hana Šebestová, Radim Čtvrtlík und Petr Schovánek. „Laser scanning confocal microscopy in materials engineering“. In 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, herausgegeben von Jan Peřina, Libor Nozka, Miroslav Hrabovský, Dagmar Senderáková, Waclaw Urbańczyk und Ondrej Haderka. SPIE, 2012. http://dx.doi.org/10.1117/12.2010259.
Der volle Inhalt der QuelleChou, D. R., und A. P. Wax. „Optical scattering of confocal laser scanning reflectance microscopy in turbid media“. In 2005 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2005. http://dx.doi.org/10.1109/cleo.2005.202204.
Der volle Inhalt der QuelleJacques, S., R. Samatham, N. Choudhury und D. S. Gareau. „Specifying tissue optical properties using axial dependence of confocal reflectance images: confocal scanning laser microscopy and optical coherence tomography“. In Biomedical Optics (BiOS) 2007, herausgegeben von Adam Wax und Vadim Backman. SPIE, 2007. http://dx.doi.org/10.1117/12.716535.
Der volle Inhalt der QuelleMinamikawa, T., E. Hase, S. Miyamoto, H. Yamamoto und T. Yasui. „Development of confocal laser scanning microscopy by use of optical frequency comb“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_si.2017.sf2c.3.
Der volle Inhalt der QuelleAbouraddy, Ayman F., und Kimani C. Toussaint. „Arbitrary focal-field polarization control for optical microscopy“. In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628648.
Der volle Inhalt der QuelleStanciu, Stefan G., Radu Hristu, Radu Boriga und George Stanciu. „Feature based recognition of photonic devices in images obtained by confocal scanning laser microscopy“. In 2009 11th International Conference on Transparent Optical Networks (ICTON). IEEE, 2009. http://dx.doi.org/10.1109/icton.2009.5185282.
Der volle Inhalt der QuelleTuohy, Simon, Adrian Bradu, Fabrice Harms, Nicolas Chateau und Adrian G. Podoleanu. „Adaptive optics loop for en-face optical coherence tomography and laser scanning confocal microscopy“. In 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics. SPIE, 2008. http://dx.doi.org/10.1117/12.817814.
Der volle Inhalt der QuelleBeltrame, Francesco, Paola Ramoino, Marco Fato, Maria U. Delmonte Corrado, Giampiero Marcenaro und Tina Crippa Franceschi. „Three-dimensional reconstruction of paramecium primaurelia oral apparatus through confocal laser scanning optical microscopy“. In SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology, herausgegeben von Raj S. Acharya, Carol J. Cogswell und Dmitry B. Goldgof. SPIE, 1992. http://dx.doi.org/10.1117/12.59598.
Der volle Inhalt der QuelleWang, Yajie, Han Cui, Yun Wang, Lirong Qiu und Weiqian Zhao. „The method of axial drift compensation of laser differential confocal microscopy based on zero-tracking“. In International Conference on Optical Instruments and Technology 2015, herausgegeben von Yongtian Wang, Xiaodi Tan und Kimio Tatsuno. SPIE, 2015. http://dx.doi.org/10.1117/12.2193289.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Optical polarization and confocal laser microscopy"
Wickramaratne, Chathuri, Emily Sappington und Hanadi Rifai. Confocal Laser Fluorescence Microscopy to Measure Oil Concentration in Produced Water: Analyzing Accuracy as a Function of Optical Settings. Journal of Young Investigators, Juni 2018. http://dx.doi.org/10.22186/jyi.34.6.39-47.
Der volle Inhalt der Quelle