Auswahl der wissenschaftlichen Literatur zum Thema „Optical phase conjugation“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optical phase conjugation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Optical phase conjugation":

1

Damzen, M. J. „Optical Phase Conjugation“. Optica Acta: International Journal of Optics 32, Nr. 6 (Juni 1985): 639. http://dx.doi.org/10.1080/716099688a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shkunov, Vladimir V., und Boris Ya Zel'dovich. „Optical Phase Conjugation“. Scientific American 253, Nr. 6 (Dezember 1985): 54–59. http://dx.doi.org/10.1038/scientificamerican1285-54.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Krolikowski, W., M. R. Belić und A. Bledowski. „Phase transfer in optical phase conjugation“. Physical Review A 37, Nr. 6 (01.03.1988): 2224–26. http://dx.doi.org/10.1103/physreva.37.2224.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ostermeyer, M., H. J. Kong, V. I. Kovalev, R. G. Harrison, A. A. Fotiadi, P. Mégret, M. Kalal et al. „Trends in stimulated Brillouin scattering and optical phase conjugation“. Laser and Particle Beams 26, Nr. 3 (09.06.2008): 297–362. http://dx.doi.org/10.1017/s0263034608000335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractAn overview on current trends in stimulated Brillouin scattering and optical phase conjugation is given. This report is based on the results of the “Second International Workshop on stimulated Brillouin scattering and phase conjugation” held in Potsdam/Germany in September 2007. The properties of stimulated Brillouin scattering are presented for the compensation of phase distortions in combination with novel laser technology like ceramics materials but also for e.g., phase stabilization, beam combination, and slow light. Photorefractive nonlinear mirrors and resonant refractive index gratings are addressed as phase conjugating mirrors in addition.
5

Chengmingyue Li, Chengmingyue Li. „Optical phase conjugation (OPC) for focusing light through/inside biological tissue“. Infrared and Laser Engineering 48, Nr. 7 (2019): 702001. http://dx.doi.org/10.3788/irla201948.0702001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Okada, Yoshiko, und Ichirou Yamaguchi. „Optical phase conjugation using bacteriorhodopsin“. Optics & Laser Technology 24, Nr. 2 (April 1992): 104. http://dx.doi.org/10.1016/0030-3992(92)90043-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Moosad, K. P. B. „Optical phase conjugation for postgraduates“. European Journal of Physics 10, Nr. 2 (01.04.1989): 133–35. http://dx.doi.org/10.1088/0143-0807/10/2/011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pepper, David M. „Applications of Optical Phase Conjugation“. Scientific American 254, Nr. 1 (Januar 1986): 74–83. http://dx.doi.org/10.1038/scientificamerican0186-74.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Eichmann, George, Yao Li und R. R. Alfano. „Parallel optical logic using optical phase conjugation“. Applied Optics 26, Nr. 2 (15.01.1987): 194. http://dx.doi.org/10.1364/ao.26.000194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tang, Xuefeng, und Zongyan Wu. „WDM transmissions exploiting optical phase conjugation“. Annales Des Télécommunications 62, Nr. 5-6 (Mai 2007): 518–30. http://dx.doi.org/10.1007/bf03253274.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Optical phase conjugation":

1

Schroeder, W. A. „Optical phase conjugation by stimulated Brillouin scattering“. Thesis, Imperial College London, 1987. http://hdl.handle.net/10044/1/46505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bor, Sheau-Shong. „Phase conjugation characteristics of Gaussian beam /“. The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487262825076392.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Anikeev, Igorʹ Yu. „Study of limiting factors and methods of optical phase conjugation by stimulated Brillouin scattering“. Title page, table of contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09pha597.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Includes bibliographical references (leaves 205-227) A study of phase conjugation by stimulated Brillouin scattering is presented with emphasis on the limiting factors, such as aperture and polarization losses, spatial coherence and saturation of the incident wave on the quality of phase conjugation, as well as the application of stimulated Brillouin scattering to loop phase-cojugated mirror and intracavity-SBS-cell-phase-conjugated oscillator.
4

HOLM, DAVID ALLEN. „QUANTUM THEORY OF MULTIWAVE MIXING (RESONANCE FLUORESCENCE, SATURATION SPECTROSCOPY, MODULATION, PHASE CONJUGATION, QUANTUM NOISE)“. Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187980.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This dissertation formulates and applies a theory describing how one or two strong classical waves and one or two weak quantum mechanical waves interact in a two-level medium. The theory unifies many topics in quantum optics, such as resonance fluorescence, saturation spectroscopy, modulation spectroscopy, the build up of laser and optical bistability instabilities, and phase conjugation. The theory is based on a quantum population pulsation approach that resembles the semiclassical theories, but is substantially more detailed. Calculations are performed to include the effects of inhomogeneous broadening, spatial hole burning, and Gaussian transverse variations. The resonance fluorescence spectrum in a high finesse optical cavity is analyzed in detail, demonstrating how stimulated emission and multiwave processes alter the spectrum from the usual three peaks. The effects of quantum noise during the propagation of weak signal and conjugate fields in phase conjugation and modulation spectroscopy are studied. Our analysis demonstrates that quantum noise affects not only the intensities of the signal and conjugate, but also their relative phase, and in particular we determine a quantum limit to the semiclassical theory of FM modulation spectroscopy. Finally, we derive the corresponding theory for the two-photon, two-level medium. This yields the first calculation of the two-photon resonance fluorescence spectrum. Because of the greater number of possible interactions in the two-photon two-level model, the theoretical formalism is considerably more complex, and many effects arise that are absent in the one-photon problem. We discuss the role of the Stark shifts on the emission spectrum and show how the Rayleigh scattering is markedly different.
5

Devrelis, Vladimyros. „Fidelity of optical phase conjugation using stimulated brillouin scattering /“. Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phd514.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ridley, Kevin Dennis. „Novel phase conjugation techniques based on stimulated Brillouin scattering“. Thesis, Imperial College London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kaczmarek, M. „Dynamics of resonant degenerate four-wave mixing and applications in gaseous media“. Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291286.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Smout, A. M. C. „Studies of novel photorefractive behaviour in self-pumped barium titanate“. Thesis, University of Essex, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lindsay, Iain. „Optical phase conjugation in photorefractive materials and its application to image processing“. Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47541.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bach, Tobias. „Optical phase conjugation for laser beam clean-up with Sn₂P₂S₆ crystals /“. Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17826.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Optical phase conjugation":

1

1946-, Gower M., und Proch D. 1941-, Hrsg. Optical phase conjugation. Berlin: Springer, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sakai, Junʼichi. Phase conjugate optics. New York: McGraw-Hill, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zelʹdovich, B. I͡A. Principles of phase conjugation. Berlin: Springer-Verlag, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dmitriev, V. G. Nelineĭnai͡a optika i obrashchenie volnovogo fronta. Moskva: Nauka. Fizmatlit, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Peřinová, Vlasta. Phase in optics. Singapore: World Scientific, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

1943-, Fisher Robert A., Abramowitz Ira, Society of Photo-optical Instrumentation Engineers. und University of Alabama in Huntsville. Center for Applied Optics., Hrsg. Phase conjugation and beam combining and diagnostics: 14-16 January, 1987, Los Angeles, California. Bellingham, Wash: SPIE--the International Society for Optical Engineering, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Optics, European Congress on. Nonlinear optical materials: ECO1, 19-20 September 1988, Hamburg, Federal Republic of Germany. Herausgegeben von Roosen Gérald, European Physical Society, European Federation for Applied Optics. und Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

European Congress on Optics (3rd 1990 Hague, Netherlands). Nonlinear optical materials III: ECO3 : 14-15 March 1990, The Hague, The Netherlands. Herausgegeben von Günter Peter, European Physical Society und Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Evans, Myron W. Optical phase conjugation in nuclear magnetic resonance: Laser NMR spectroscopy. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Arnoldus, Henk F. Phase conjugation in a layer of nonlinear material. New York: Nova Science Publishers, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Optical phase conjugation":

1

Almeida, Silverio P., und Luis M. Bernardo. „Phase Conjugation Metrology“. In Optical Metrology, 467–80. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3609-6_30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Eichler, H. J., A. Haase, B. Liu und O. Mehl. „Phase Conjugation Techniques“. In Optical Resonators — Science and Engineering, 103–17. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2486-9_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dunning, G. J., und C. R. Giuliano. „Optical Computing Using Phase Conjugation“. In Nonlinear Optics and Optical Computing, 173–95. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0629-0_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schneider, Thomas. „Nonlinear Optical Phase Conjugation“. In Nonlinear Optics in Telecommunications, 367–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08996-5_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Eason, Robert W. „Optical processing using phase conjugation“. In Nonlinear Optics in Signal Processing, 190–228. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zel’dovich, Boris Ya, Nikolai F. Pilipetsky und Vladimir V. Shkunov. „Introduction to Optical Phase Conjugation“. In Springer Series in Optical Sciences, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-540-38959-0_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Murti, YVGS, und C. Vijayan. „Optical Phase Conjugation and Bistability“. In Essentials of Nonlinear Optics, 101–24. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118902332.ch6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Murti, Y. V. G. S., und C. Vijayan. „Optical Phase Conjugation and Bistability“. In Physics of Nonlinear Optics, 91–110. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73979-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dunning, G. J., und C. R. Giuliano. „Selected References on Optical Computing Using Phase Conjugation“. In Nonlinear Optics and Optical Computing, 265–68. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0629-0_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bigio, I. J., R. A. Fisher, T. R. Gosnell, N. A. Kurnit, T. R. Loree, T. R. Moore, A. V. Nowak und D. E. Watkins. „New Developments in Optical Phase Conjugation“. In Gas Flow and Chemical Lasers, 52–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71859-5_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Optical phase conjugation":

1

Tataronis, John, und Bahaa E. A. Saleh. „Phase conjugation of nonstationary optical signals“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.fw5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The generation of phase conjugated replicas of optical signals has been the subject of many theoretical and experimental studies. Phase conjugation of harmonic signals is a byproduct of certain nonlinear processes such as degenerate four- wave mixing and stimulated Brillouin scattering. Although conjugation of steady signals is well established, the possibility and the effectiveness of conjugating unsteady signals remain largely unexplored. When the envelope of an optical signal varies, new physical phenomena in the conjugation process arise. As previously shown,1 dispersion in the conjugation process distorts the phase conjugate replica of a pulsed signal. Distortion appears even if the response of the medium to the applied optical signal is instantaneous.
2

Yust, Brian G., Dhiraj K. Sardar und Andrew Tsin. „Phase conjugating nanomirrors: utilizing optical phase conjugation for imaging“. In SPIE BiOS, herausgegeben von Alexander N. Cartwright und Dan V. Nicolau. SPIE, 2011. http://dx.doi.org/10.1117/12.874293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hall, T. J. „Review Of Phase Conjugation“. In Optical Systems for Space and Defence, herausgegeben von Alan H. Lettington. SPIE, 1990. http://dx.doi.org/10.1117/12.969673.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zeldovich, B. Y. „Overview of optical phase conjugation“. In Technical Digest Summaries of papers presented at the Conference on Lasers and Electro-Optics Conference Edition. 1998 Technical Digest Series, Vol.6. IEEE, 1998. http://dx.doi.org/10.1109/cleo.1998.676041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rogovin, Daniel N. „Acoustically pumped optical phase conjugation“. In OE/LASE '90, 14-19 Jan., Los Angeles, CA, herausgegeben von Robert A. Fisher und John F. Reintjes. SPIE, 1990. http://dx.doi.org/10.1117/12.18321.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shen, T. P., und D. Rogovin. „Optical phase conjugation in polyacetylene“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fg4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Polyacetylene is a long linear, chainlike material whose optical properties at visible wavelengths arise from the motion of the π-electrons along the bonds that connect the sites. The nonlinear optical properties of polyacetylene materialize from two anharmonic electronic interactions: (1) the π-electrons interact with the phonons and (2) they interact with each other through their Coulomb repulsion. The motion of the π-electrons driven by an optical field were described within a classical framework and the third-order optical susceptibility associated with phase conjugation was determined. The wavelength (λ) has dependence on the nonlinear optical susceptibility; two peaks coincide with a resonant response. A low frequency peak in the vicinity of 1.2 µm reflects a two-photon resonance process and arises from the Coulomb repulsion. A high frequency peak at 0.6 µm is the single photon resonance and arises from both the Coulomb repulsion and the electron phonon coupling.
7

Brody, Philip S., und Charles Garvin. „Microscope using optical phase conjugation“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.fy4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Phase contrast imaging by the backward passage of a phase-conjugate beam through a phase plate that was used to produce the original phase distorted beam depends on the phase conjugate of the original field passing back through the specimen after the specimen has been shifted. We demonstrated this previously using self-pumping in barium titanate to produce the phase-conjugate field and a mechanical means to shift the plate. The intensity images show the gradients of plate optical thickness with respect to the shift direction of the specimen’s optical thickness.1 We note that an image should also result if the slide remains stationary but component elements of the specimen move. Taking advantage of this last we have developed a microscope which shows dynamic processes within biological phase objects. The stationary elements on the slide do not show up; the image shows only those elements that move. The device includes a stage of digital processing which removes coherent artifacts and also adds gradients in intensity of moving elements in the bright field intensity image.
8

Little, Gordon R., und Steven C. Gustafson. „Binary pattern classification using optical phase conjugation“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.md3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
An elementary binary pattern classifier has n binary input variables and one binary output variable. The input variables may be identified with image pixels so that there are 2n possible input patterns. Classification or specification of the binary output is required for m of these patterns; the remaining patterns are do not cares. For m > 2n and large n (e.g., n ≥ 64), classifiers using all-electronic combinatorial logic techniques generally require numerous decision elements and complex interconnections. These requirements may lead to limited performance in areas such as processing speed and noise tolerance. Classifiers based on holographic associative memory techniques and the use of optical phase conjugation have potential for providing substantial performance improvements in these areas. In particular, analytical and computer simulation results indicate that phase conjugation with thresholded gain may significantly impove the ability of holographic associative memory processors to correctly classify numerous noisy or highly cross-correlated binary patterns. This indication may be attributed mainly to the fact that an additional well-interconnected decision surface can be inserted in a classifier by a thresholded phase conjugator.
9

Khizhnyak, Anatoliy, und Vladimir Markov. „TIL system with nonlinear phase conjugation“. In Optical Engineering + Applications, herausgegeben von Stephen M. Hammel, Alexander M. J. van Eijk, Michael T. Valley und Mikhail A. Vorontsov. SPIE, 2007. http://dx.doi.org/10.1117/12.735161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Saavedra, G., Y. Sun, K. R. H. Bottrill, L. Galdino, F. Parmigiani, Z. Liu, D. J. Richardson, P. Petropoulos, R. I. Killey und P. Bayvel. „Optical Phase Conjugation in Installed Optical Networks“. In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ofc.2018.w3e.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Optical phase conjugation":

1

Bowers, M. W., C. Kecy, L. Little, J. Cooke, J. Benterou, R. Boyd und T. Birks. Speckle Reduction for LIDAR Using Optical Phase Conjugation. Office of Scientific and Technical Information (OSTI), Februar 2001. http://dx.doi.org/10.2172/15013526.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Richardson, Martin, und Magali Durand. Optical Phase Conjugation by Two Counter Propagating Filament. Fort Belvoir, VA: Defense Technical Information Center, Februar 2013. http://dx.doi.org/10.21236/ada581672.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hellwarth, Robert W. Optical Beam Phase-Conjugation and Electromagnetic Scattering Process with Intense Fields. Fort Belvoir, VA: Defense Technical Information Center, Mai 1988. http://dx.doi.org/10.21236/ada200372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Marston, Philip L. Research on Acoustical Scattering, Diffraction Catastrophes, Optics of Bubbles, Photoacoustics, and Acoustical Phase Conjugation. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1986. http://dx.doi.org/10.21236/ada174401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie