Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Optical pattern recognition.

Zeitschriftenartikel zum Thema „Optical pattern recognition“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Optical pattern recognition" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Solus, Dávid, Ľuboš Ovseník und Ján Turán. „Microchip Pattern Recognition Based on Optical Correlator“. Acta Electrotechnica et Informatica 17, Nr. 2 (01.06.2017): 38–42. http://dx.doi.org/10.15546/aeei-2017-0014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kumar, Virendra. „Guest Editorial: Optical Pattern Recognition“. Optical Engineering 29, Nr. 9 (1990): 993. http://dx.doi.org/10.1117/12.150767.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Refregier, Ph. „Optical pattern recognition: optimal trade-off circular harmonic filters“. Optics Communications 86, Nr. 2 (November 1991): 113–18. http://dx.doi.org/10.1016/0030-4018(91)90544-n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mahlab, Uri, H. John Caulfield und Joseph Shamir. „Genetic algorithm for optical pattern recognition“. Optics Letters 16, Nr. 9 (01.05.1991): 648. http://dx.doi.org/10.1364/ol.16.000648.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tozer, B. „Optical pattern recognition using holographic techniques“. Optics & Laser Technology 20, Nr. 5 (Oktober 1988): 274. http://dx.doi.org/10.1016/0030-3992(88)90032-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mahlab, Uri, Michael Fleisher und Joseph Shamir. „Error probability in optical pattern recognition“. Optics Communications 77, Nr. 5-6 (Juli 1990): 415–22. http://dx.doi.org/10.1016/0030-4018(90)90137-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Parrish, E. A., A. O. Anyiwo und T. E. Batchman. „Integrated optical processors in pattern recognition“. Pattern Recognition 18, Nr. 3-4 (Januar 1985): 227–40. http://dx.doi.org/10.1016/0031-3203(85)90048-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Carhart, Gary W., Bret F. Draayer und Michael K. Giles. „Optical pattern recognition using bayesian classification“. Pattern Recognition 27, Nr. 4 (April 1994): 587–606. http://dx.doi.org/10.1016/0031-3203(94)90039-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chang, Shoude, Philippe Gagné und Henri H. Arsenault. „Optical Intensity Filters for Pattern Recognition“. Journal of Modern Optics 42, Nr. 10 (Oktober 1995): 2041–50. http://dx.doi.org/10.1080/09500349514551771.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Liu, Hua-Kuang. „Self-amplified optical pattern-recognition technique“. Applied Optics 31, Nr. 14 (10.05.1992): 2568. http://dx.doi.org/10.1364/ao.31.002568.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Kumar, B. V. K. Vijaya, Z. Bahri und L. Hassebrook. „Correlation Filters for Optical Pattern Recognition“. IETE Journal of Research 35, Nr. 2 (März 1989): 105–13. http://dx.doi.org/10.1080/03772063.1989.11436800.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Yu, F. T. S., und D. A. Gregory. „Optical pattern recognition: architectures and techniques“. Proceedings of the IEEE 84, Nr. 5 (Mai 1996): 733–52. http://dx.doi.org/10.1109/5.488743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Thalmann, R. „Optical pattern recognition using holographic techniques“. Optics and Lasers in Engineering 11, Nr. 3 (Januar 1989): 217–19. http://dx.doi.org/10.1016/0143-8166(89)90032-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lee, Minhoon, Hobin Kim, Mikyeong Moon und Seung-Min Park. „Computer-Vision-Based Advanced Optical Music Recognition System“. Journal of Computational and Theoretical Nanoscience 18, Nr. 5 (01.05.2021): 1345–51. http://dx.doi.org/10.1166/jctn.2021.9626.

Der volle Inhalt der Quelle
Annotation:
Computer vision is an artificial intelligence technology that studies techniques for extracting information from images. Several studies have been performed to identify and edit music scores using computer vision. This study proposes a system to identify musical notes and print arranged music. Music is produced by general rules; consequently, the components of music have specific patterns. There are four approaches in pattern recognition that can be used classify images using patterns. Our proposed method of identifying music sheets is as follows. Several pretreatment processes (image binary, noise and staff elimination, image resizing) are performed to aid the identification. The components of the music sheet are identified by statistical pattern recognition. Applying an artificial intelligence model (Markov chain) to extracted music data aids in arranging the data. From applying the pattern recognition technique, a recognition rate of 100% was shown for music sheets of low complexity. The components included in the recognition rate are signs, notes, and beats. However, there was a low recognition rate for some music sheet and can be addressed by adding a classification to the navigation process. To increase the recognition rate of the music sheet with intermediate complexity, it is necessary to refine the pre-processing process and pattern recognition algorithm. We will also apply neural network-based models to the arrangement process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Lee, Minhoon, Hobin Kim, Mikyeong Moon und Seung-Min Park. „Computer-Vision-Based Advanced Optical Music Recognition System“. Journal of Computational and Theoretical Nanoscience 18, Nr. 5 (01.05.2021): 1345–51. http://dx.doi.org/10.1166/jctn.2021.9626.

Der volle Inhalt der Quelle
Annotation:
Computer vision is an artificial intelligence technology that studies techniques for extracting information from images. Several studies have been performed to identify and edit music scores using computer vision. This study proposes a system to identify musical notes and print arranged music. Music is produced by general rules; consequently, the components of music have specific patterns. There are four approaches in pattern recognition that can be used classify images using patterns. Our proposed method of identifying music sheets is as follows. Several pretreatment processes (image binary, noise and staff elimination, image resizing) are performed to aid the identification. The components of the music sheet are identified by statistical pattern recognition. Applying an artificial intelligence model (Markov chain) to extracted music data aids in arranging the data. From applying the pattern recognition technique, a recognition rate of 100% was shown for music sheets of low complexity. The components included in the recognition rate are signs, notes, and beats. However, there was a low recognition rate for some music sheet and can be addressed by adding a classification to the navigation process. To increase the recognition rate of the music sheet with intermediate complexity, it is necessary to refine the pre-processing process and pattern recognition algorithm. We will also apply neural network-based models to the arrangement process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zang, Yiming, Yong Qian, Wei Liu, Yongpeng Xu, Gehao Sheng und Xiuchen Jiang. „A Novel Partial Discharge Detection Method Based on the Photoelectric Fusion Pattern in GIL“. Energies 12, Nr. 21 (28.10.2019): 4120. http://dx.doi.org/10.3390/en12214120.

Der volle Inhalt der Quelle
Annotation:
Optical detection and ultrahigh frequency (UHF) detection are two significant methods of partial discharge (PD) detection in the gas-insulated transmission lines (GIL), however, there is a phenomenon of signals loss when using two types of detections to monitor PD signals of different defects, such as needle defect and free particle defect. This makes the optical and UHF signals not correspond strictly to the actual PD signals, and therefore the characteristic information of optical PD patterns and UHF PD patterns is incomplete which reduces the accuracy of the pattern recognition. Therefore, an image fusion algorithm based on improved non-subsampled contourlet transform (NSCT) is proposed in this study. The optical pattern is fused with the UHF pattern to achieve the complementarity of the two detection methods, avoiding the PD signals loss of different defects. By constructing the experimental platform of optical-UHF integrated detection for GIL, phase-resolved partial discharge (PRPD) patterns of three defects were obtained. After that, the image fusion algorithm based on the local entropy and the phase congruency was used to produce the photoelectric fusion PD pattern. Before the pattern recognition, 28 characteristic parameters are extracted from the photoelectric fusion pattern, and then the dimension of the feature space is reduced to eight by the principal component analysis. Finally, three kinds of classifiers, including the linear discriminant analysis (LDA), support vector machine (SVM), and k-nearest neighbor (KNN), are used for the pattern recognition. The results show that the recognition rate of all the photoelectric fusion pattern under different classifiers is higher than that of optical and UHF patterns, up to the maximum of 95%. Moreover, the photoelectric fusion pattern not only greatly improves the recognition rate of the needle defect and the free particle defect, but the recognition accuracy of the floating defect is also slightly improved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Xu, Hai Yan, Zhuo Zhang und Xue Wu Zhang. „Signal Recognition Basing on Optical Fiber Vibration Sensor“. Applied Mechanics and Materials 347-350 (August 2013): 743–47. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.743.

Der volle Inhalt der Quelle
Annotation:
Distributed optical fiber sensor can acquire the information of physical field along time and spatial continuous distribution. It plays an important role in long-distance oil and electricity transmission and security. In this paper, the author introduced the universal steps in triggering pattern recognition, which includes signal characteristics extracting by accurate endpoint detecting, templates establishing by training, and pattern matching. By training the samples acquired in the laboratory, three templates are established. And pattern matching had been done between templates and all the samples. The results show that, 87.5 percent of the samples are matched correctly with the triggering patterns they are belonging to.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Tamee, Kreangsak, Khomyuth Chaiwong, Kriengsak Yothapakdee und Preecha P. Yupapin. „Fringe patterns generated by micro-optical sensors for pattern recognition“. Artificial Cells, Nanomedicine, and Biotechnology 43, Nr. 4 (22.01.2014): 252–57. http://dx.doi.org/10.3109/21691401.2013.875034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

NAGAE, Sadahiko. „Pattern Recognition by Optical Data Processing (3)“. Journal of Graphic Science of Japan 20, Nr. 2 (1986): 7–13. http://dx.doi.org/10.5989/jsgs.20.2_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Patil, Aparna. „Optical Character Recognition Implementation using Pattern Matching“. International Journal for Research in Applied Science and Engineering Technology 7, Nr. 8 (31.08.2019): 1092–95. http://dx.doi.org/10.22214/ijraset.2019.8155.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Liu, Hua-Kuang. „Bifurcating optical pattern recognition in photorefractive crystals“. Optics Letters 18, Nr. 1 (01.01.1993): 60. http://dx.doi.org/10.1364/ol.18.000060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Chang, Shoude. „Invariant optical pattern recognition using calculus descriptors“. Optical Engineering 33, Nr. 12 (01.12.1994): 4045. http://dx.doi.org/10.1117/12.183407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Mahlab, Uri, und Joseph Shamir. „Optical pattern recognition based on convex functions“. Journal of the Optical Society of America A 8, Nr. 8 (01.08.1991): 1233. http://dx.doi.org/10.1364/josaa.8.001233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Zalman, Gady, und Joseph Shamir. „Reducing error probability in optical pattern recognition“. Journal of the Optical Society of America A 8, Nr. 12 (01.12.1991): 1866. http://dx.doi.org/10.1364/josaa.8.001866.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Lhamon, Michael E. „Translation‐invariant optical pattern recognition without correlation“. Optical Engineering 35, Nr. 9 (01.09.1996): 2700. http://dx.doi.org/10.1117/1.600835.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Casasent, David P., und Elizabeth C. Botha. „Knowledge In Optical Symbolic Pattern Recognition Processors“. Optical Engineering 26, Nr. 1 (01.01.1987): 260134. http://dx.doi.org/10.1117/12.7974018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Srinivasan, Rajani, Jason Kinser, Marius Schamschula, Joseph Shamir und H. John Caulfield. „Optical syntactic pattern recognition by fuzzy scoring“. Optics Letters 21, Nr. 11 (01.06.1996): 815. http://dx.doi.org/10.1364/ol.21.000815.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Kober, V., V. Lashin, I. Moreno, J. Campos, L. P. Yaroslavsky und M. J. Yzuel. „Color component transformations for optical pattern recognition“. Journal of the Optical Society of America A 14, Nr. 10 (01.10.1997): 2656. http://dx.doi.org/10.1364/josaa.14.002656.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Toyoda, Haruyoshi. „Pattern recognition system using optical analogue processing“. Optics & Laser Technology 29, Nr. 1 (Februar 1997): xiii. http://dx.doi.org/10.1016/s0030-3992(97)88163-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Rosen, Joseph, Tuvia Kotzer und Joseph Shamir. „Optical implementation of phase extraction pattern recognition“. Optics Communications 83, Nr. 1-2 (Mai 1991): 10–14. http://dx.doi.org/10.1016/0030-4018(91)90513-d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Cheng, Yih-Shyang. „Real-Time Shift-Invariant Optical Pattern Recognition“. International Journal of High Speed Electronics and Systems 08, Nr. 04 (Dezember 1997): 733–48. http://dx.doi.org/10.1142/s0129156497000305.

Der volle Inhalt der Quelle
Annotation:
Shift invariance is an asset of the VanderLugt correlator, from which the location of the identified object is automatically specified. The development of filters which possess two or three types of invariance (shift, rotation, size, and distortion) simultaneously is reviewed. Various real-time implementation of VanderLugt as well as joint-transform correlators by utilizing spatial light modulators are also reviewed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Caulfield, H. John, und David Armitage. „Adaptive resonance theory of optical pattern recognition“. Applied Optics 28, Nr. 19 (01.10.1989): 4060. http://dx.doi.org/10.1364/ao.28.004060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Metioui, A., und L. Leclerc. „Sidelobe reduction methods in optical pattern recognition“. Journal of Optics 21, Nr. 4 (Juli 1990): 161–70. http://dx.doi.org/10.1088/0150-536x/21/4/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Casasent, D. „General-purpose optical pattern recognition image processors“. Proceedings of the IEEE 82, Nr. 11 (1994): 1724–34. http://dx.doi.org/10.1109/5.333750.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Lejeune, Claude, und Yunlong Sheng. „Optoneural system for invariant pattern recognition“. Canadian Journal of Physics 71, Nr. 9-10 (01.09.1993): 405–9. http://dx.doi.org/10.1139/p93-063.

Der volle Inhalt der Quelle
Annotation:
An optoneural system is developed for invariant pattern recognition. The system consists of an optical correlator and a neural network. The correlator uses Fourier–Mellin spatial filters (FMF) for feature extraction. The FMF yields an unique output pattern for an input object. The present method works only with one object present in the input scene. The optical features extracted from the output pattern are shift, scale, and rotation invariant and are used as input to the neural network. The neural network is a multilayer feedforward net with back-propagation learning rule. Because of substantial reduction of the dimension of feature vectors provided by optical FMF, the small neural network is simply simulated in a personal computer. Optical experimental results are shown.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Grunnet-Jepsen, A., S. Tonda und V. Laude. „Convolution-kernel-based optimal trade-off filters for optical pattern recognition“. Applied Optics 35, Nr. 20 (10.07.1996): 3874. http://dx.doi.org/10.1364/ao.35.003874.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wu, Cen, Xuelin Yang und Weisheng Hu. „Binary Pattern Recognition for High-Speed Optical Signal“. Recent Patents on Electrical & Electronic Engineering 6, Nr. 1 (01.03.2013): 55–62. http://dx.doi.org/10.2174/2213111611306010007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Horner, Joseph L. „Optical pattern recognition for validation and security verification“. Optical Engineering 33, Nr. 6 (01.06.1994): 1752. http://dx.doi.org/10.1117/12.170736.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Goldstein, Dennis H. „Phase-encoding input images for optical pattern recognition“. Optical Engineering 33, Nr. 6 (01.06.1994): 1806. http://dx.doi.org/10.1117/12.171322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Ipson, S. S., W. Booth und K. F. Chang. „Coherent Optical Pattern Recognition Using Computer-Generated Holograms“. International Journal of Electrical Engineering Education 28, Nr. 4 (Oktober 1991): 322–30. http://dx.doi.org/10.1177/002072099102800406.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Davis, Jeffrey A., Don M. Cottrell, Glenn W. Bach und Roger A. Lilly. „Phase-encoded binary filters for optical pattern recognition“. Applied Optics 28, Nr. 2 (15.01.1989): 258. http://dx.doi.org/10.1364/ao.28.000258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Javidi, Bahram. „Guest Editorial: Special Section on Optical Pattern Recognition“. Optical Engineering 33, Nr. 6 (01.06.1994): 1751. http://dx.doi.org/10.1117/12.181753.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Wen, Zhiqing. „Fuzzy neural network for invariant optical pattern recognition“. Optical Engineering 35, Nr. 8 (01.08.1996): 2188. http://dx.doi.org/10.1117/1.600825.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Liu, Yue. „Optical pattern recognition by extracting least substructuring elements“. Optical Engineering 38, Nr. 10 (01.10.1999): 1694. http://dx.doi.org/10.1117/1.602221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Lee, Sing H. „Optical Implementations Of Digital Algorithms For Pattern Recognition“. Optical Engineering 25, Nr. 1 (01.01.1986): 250169. http://dx.doi.org/10.1117/12.7973781.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Millán, M. S., J. Romero, M. J. Yzuel und M. Corbalán. „Optical pattern recognition based on color vision models“. Optics Letters 20, Nr. 16 (15.08.1995): 1722. http://dx.doi.org/10.1364/ol.20.001722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Hsu, Magnus T. L., Joachim Knittel, Jean-Francois Morizur, Hans-A. Bachor und Warwick P. Bowen. „Optical pattern recognition via adaptive spatial homodyne detection“. Journal of the Optical Society of America A 27, Nr. 12 (11.11.2010): 2583. http://dx.doi.org/10.1364/josaa.27.002583.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lin, Xin, und Junji Ohtsubo. „Terminal attractor optical associative memory for pattern recognition“. Optics & Laser Technology 29, Nr. 1 (Februar 1997): xiii. http://dx.doi.org/10.1016/s0030-3992(97)88158-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Camp, William O., und Jan Van der Spiegel. „A silicon VLSI optical sensor for pattern recognition“. Sensors and Actuators A: Physical 43, Nr. 1-3 (Mai 1994): 188–95. http://dx.doi.org/10.1016/0924-4247(93)00692-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Lin, Xin, Masahiko Mori, Junji Ohtsubo und Masanobu Watanabe. „Terminal Attractor Optical Associative Memory for Pattern Recognition“. Japanese Journal of Applied Physics 39, Part 1, No. 2B (28.02.2000): 908–11. http://dx.doi.org/10.1143/jjap.39.908.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie