Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optical measuring machine“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optical measuring machine" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optical measuring machine"
Meier, Nicolas, und Anthimos Georgiadis. „Optical Part Measuring inside a Milling Machine“. Key Engineering Materials 613 (Mai 2014): 440–45. http://dx.doi.org/10.4028/www.scientific.net/kem.613.440.
Der volle Inhalt der QuelleCaja, Jesús, Emilio Gómez, Piera Maresca und Miguel Berzal. „Uncertainty Estimation for the Optical System of Optical Measuring Machines“. Key Engineering Materials 615 (Juni 2014): 95–101. http://dx.doi.org/10.4028/www.scientific.net/kem.615.95.
Der volle Inhalt der QuelleSHI Zhao-yao, 石照耀, 于渤 YU Bo, 叶勇 YE Yong und 闫璐 YAN Lu. „Hourglass hob measuring machine“. Optics and Precision Engineering 23, Nr. 10 (2015): 2827–34. http://dx.doi.org/10.3788/ope.20152310.2827.
Der volle Inhalt der QuelleSimonović, Milan, Dragan Lazarević, Marko Simonović und Bogdan Nedić. „Comparison of measurement using optical measuring systems and coordinate measuring machine“. IMK-14 - Istrazivanje i razvoj 26, Nr. 2 (2020): 35–41. http://dx.doi.org/10.5937/imk2002035s.
Der volle Inhalt der QuelleMares, Ancuta I., und Rob H. Bergmans. „Evaluation of an optical coordinate measuring machine for measuring grated structures“. Measurement Science and Technology 23, Nr. 9 (25.07.2012): 094012. http://dx.doi.org/10.1088/0957-0233/23/9/094012.
Der volle Inhalt der QuelleBalle, Bernd. „Measuring means knowledge“. Advanced Technologies in Mechanics 3, Nr. 1(6) (02.03.2017): 24. http://dx.doi.org/10.17814/atim.2016.1(6).37.
Der volle Inhalt der QuelleJäger, Gerd, T. Hausotte, Eberhard Manske, H. J. Büchner, R. Mastylo, N. Dorozhovets, R. Füßl und R. Grünwald. „Nanometrology – Nanopositioning- and Nanomeasuring Machine with Integrated Nanopobes“. Materials Science Forum 505-507 (Januar 2006): 7–12. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.7.
Der volle Inhalt der QuelleKoubek, Jan, Stepan Chladek, Jiri Sveda und Ivan Divis. „OPTICAL EQUIPMENT FOR MEASURING DEFORMATION OF MACHINE TOOL COMPONENTS“. MM Science Journal 2016, Nr. 02 (08.06.2016): 907–11. http://dx.doi.org/10.17973/mmsj.2016_06_201612.
Der volle Inhalt der QuelleKirkland, Eric, Thomas R. Kurfess und Steven Y. Liang. „An Optical Coordinate Measuring Machine for Nanoscale Dimensional Metrology“. Journal of Advanced Computational Intelligence and Intelligent Informatics 8, Nr. 1 (20.01.2004): 39–44. http://dx.doi.org/10.20965/jaciii.2004.p0039.
Der volle Inhalt der QuelleHemming, Björn, Erkki Ikonen und Mart Noorma. „Measurement of Aperture Areas Using an Optical Coordinate Measuring Machine“. International Journal of Optomechatronics 1, Nr. 3 (07.09.2007): 297–311. http://dx.doi.org/10.1080/15599610701548803.
Der volle Inhalt der QuelleDissertationen zum Thema "Optical measuring machine"
Kirkland, Eric Alan. „A nano coordinate machine for optical dimensional metrology“. Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/16525.
Der volle Inhalt der QuelleHarris, John O. Spence Allan D. „Geometric and quasi-static thermal error compensation of a laser digitizer on a coordinate measuring machine“. *McMaster only, 2004.
Den vollen Inhalt der Quelle findenFulová, Silvia. „Stanovení nejistoty měření optického měřicí stroje pomocí laserinterferometru“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443250.
Der volle Inhalt der QuelleSlíž, Michal. „Posouzení vhodnosti optického měřicího přístroje“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442832.
Der volle Inhalt der QuelleMank, Slavomír. „Analýza rizik a bezpečnosti u optické kontrolní stanice“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231056.
Der volle Inhalt der QuelleMODI, ATUL. „A DESIGN OF EXPERIMENTS BASED APPROACH FOR OPTIMAL INSPECTION OF CIRCULARITY TOLERANCE“. University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1031335132.
Der volle Inhalt der QuellePalásek, Vítězslav. „Souřadnicové měřicí stroje (CMM) s optickým snímacím systémem a optické CMM“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228384.
Der volle Inhalt der QuelleKošťák, Ondřej. „Kalibrace optických souřadnicových měřicích strojů GOM ATOS“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318719.
Der volle Inhalt der QuelleHuang, Ching-Yao. „Measurement and Comparison of Progressive Addition Lenses by Three Techniques“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306849853.
Der volle Inhalt der QuelleWu, Chun-Kuan, und 吳俊寬. „A feasibility of optical methods for measuring steel ball center for 5-axis machine tool calibration“. Thesis, 2017. http://ndltd.ncl.edu.tw/handle/90140134701386217856.
Der volle Inhalt der Quelle國立中興大學
機械工程學系所
105
This study is about the feasibility of the newly designed static error measurement system for five-axis machine tool to measure geometry errors. The function requirements are to overcome the limitation of the measurement systems developed before, including increasing the working distance, applying three-dimension measurement, enhance the ability to use under the processing environment, lower the price of the reference point. The tool center point (TCP) was represent by a steel ball, named artifacts by researchers. The steel ball feature is having the same shape observed from all direction, giving that all the reflection from all direction behave as the same. This feature meets the requirements for five-axis machine tool error measuring system due to the TCP coming from all direction as well. Image processing is applied to the system to reach the function requirements. To measure the center of the steel ball, there are three method mentioned in this thesis, involving contour measuring, sphere face interfering, surface character. Backlight projection is used in contour measuring, the circle center capture by the interferometer estimate the ball displacement, surface character is produced by character light which applied virtual image generated by steel ball. The thesis describes four measurement systems, including backlight method, interferometers method, mirror reflection method, light field camera method. Back light system contains two parallel light, a steel ball, two sensors to build up a three-dimension measuring system. Interferometer system is based on Michelson interferometer by putting a steel ball as the sample and the reference surface is set on the plan side of plan-convex plan with half reflection coating. Mirror reflection system contains four mirror sides giving two capturing angle. Light field camera capture three-dimension picture by micro lens array. One-dimension experiment is used to evaluate the correlation between steel ball displacements and image displacements, and to verify the anti-processing-environment capability. Back light system reach the precision within 1μm with the system as shown and the precision still remain after adding cutting fluid while the accuracy move 15μm. Interferometer system can’t be used after adding cutting fluid. Mirror system reach the precision within 3μm and 1μm with circle fitting and image correlation while the accuracy move 35μm. Mirror reflection reach the function requirements. Virtual image is used to generate optical character successfully. Light field camera is expected to be feasible to the static error system development.
Buchteile zum Thema "Optical measuring machine"
Cook, R. B., C. Maul und A. M. Strickland. „Validation of an Optical Coordinate Measuring Machine for the Measurement of Wear at the Taper Interface in Total Hip Replacement“. In Modularity and Tapers in Total Joint Replacement Devices, 362–78. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2015. http://dx.doi.org/10.1520/stp159120140123.
Der volle Inhalt der QuelleWang, Wei, Sung Hwan Kweon, Young Suk Kim und Seung Han Yang. „Design of Geometric Error Measuring System on a Miniaturized Machine Tool with Optics“. In Optics Design and Precision Manufacturing Technologies, 1215–20. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-458-8.1215.
Der volle Inhalt der QuelleSchwingshackl, Christoph W. „Measuring Aero-Engine Pipe Vibration with a 3D Scanning Laser Doppler Vibrometer“. In Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6, 101–4. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47721-9_11.
Der volle Inhalt der QuelleGrimble, M. J., und M. R. Katebi. „Polynomial Solution of H 2 and H∞ Optimal Control Problems with Application to Coordinate Measuring Machines“. In Polynomial Methods for Control Systems Design, 223–51. London: Springer London, 1996. http://dx.doi.org/10.1007/978-1-4471-1027-9_6.
Der volle Inhalt der QuelleZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. „Methodology for Measuring Greenhouse Gas Emissions from Agricultural Soils Using Non-isotopic Techniques“. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 11–108. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_2.
Der volle Inhalt der QuelleCamacho, A. A., und F. J. Martínez-Serrano. „Application of Optomecatronics Load Cell for Measuring Work Force and Efforts in Industrial Machinery“. In Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015, 211–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28513-9_29.
Der volle Inhalt der QuelleCastillo, Javier Rivera, Moises Rivas-Lopez, Wendy Flores-Fuentes, Oleg Sergiyenko, Julio Cesar Rodríguez-Quiñonez und Daniel Hernandez-Balbuena. „Machine Vision Optical Scanners for Landslide Monitoring“. In Developing and Applying Optoelectronics in Machine Vision, 206–35. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0632-4.ch007.
Der volle Inhalt der QuelleMiranda-Vega, Jesús Elias, Javier Rivera-Castillo, Moisés Rivas-López, Wendy Flores-Fuentes, Oleg Sergiyenko, Julio C. Rodríguez-Quiñonez und Daniel Hernández-Balbuena. „Reducing the Optical Noise of Machine Vision Optical Scanners for Landslide Monitoring“. In Examining Optoelectronics in Machine Vision and Applications in Industry 4.0, 103–33. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6522-3.ch004.
Der volle Inhalt der QuelleDvoynishnikov, Sergey Vladimirovich, und Vladimir Genrievich Meledin. „Optoelectronic Differential Cloudy Triangulation Method for Measuring Geometry of Hot Moving Objects“. In Optoelectronics in Machine Vision-Based Theories and Applications, 49–78. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5751-7.ch003.
Der volle Inhalt der QuelleLingelbach, Katharina, Sabrina Gado und Wilhelm Bauer. „Neuro-adaptive tutoring systems - Neurophysiological-based recognition of affective-emotional and cognitive states of learners for intelligent neuro-adaptive tutoring systems“. In Competence development and learning assistance systems for the data-driven future, 243–60. Goto Verlag, 2021. http://dx.doi.org/10.30844/wgab_2021_15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optical measuring machine"
Sun Huan-Xiang und Zhang Ping. „Measuring mould boundary by optical scanners and three coordinate measuring machine“. In 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE 2010). IEEE, 2010. http://dx.doi.org/10.1109/cmce.2010.5610085.
Der volle Inhalt der QuelleMeier, N., und A. Georgiadis. „P5.2 - Optical part measuring inside a milling machine“. In AMA Conferences 2013. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2013. http://dx.doi.org/10.5162/sensor2013/p5.2.
Der volle Inhalt der QuelleWagner, Michael. „Design of a measuring machine for optical filters“. In Eighth European Seminar on Precision Optics Manufacturing, herausgegeben von Alexander Haberl, Gerald Fütterer, Oliver W. Fähnle und Rolf Rascher. SPIE, 2021. http://dx.doi.org/10.1117/12.2594445.
Der volle Inhalt der QuelleMinoni, Umberto, Franco Docchio, Silvano Biazzi, Pietro Brusaferri und Giovanni Scotti. „Flexible measuring machine based on a double interferometer“. In Optical Tools for Manufacturing and Advanced Automation, herausgegeben von Kevin G. Harding und H. Philip Stahl. SPIE, 1993. http://dx.doi.org/10.1117/12.162102.
Der volle Inhalt der QuelleKhan, Abdul Wahid, und Wuyi Chen. „Squareness perpendicularity measuring techniques in multiaxis machine tools“. In 4th International Symposium on Advanced Optical Manufacturing and testing technologies: Optical Test and Measurement Technology and Equipment, herausgegeben von Yudong Zhang, James C. Wyant, Robert A. Smythe und Hexin Wang. SPIE, 2009. http://dx.doi.org/10.1117/12.828603.
Der volle Inhalt der QuelleKramar, John, Jau-Shi J. Jun, William B. Penzes, Fredric Scire, E. Clayton Teague und John S. Villarrubia. „Grating pitch measurements with the molecular measuring machine“. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von Fernando L. Podio. SPIE, 1999. http://dx.doi.org/10.1117/12.371144.
Der volle Inhalt der QuellePetersen, Ralph, und Hendrik Rothe. „Development problems of a nanometer coordinate measuring machine (NCMM)“. In International Symposium on Optical Science and Technology, herausgegeben von Zu-Han Gu und Alexei A. Maradudin. SPIE, 2000. http://dx.doi.org/10.1117/12.401663.
Der volle Inhalt der QuellePetersen, Ralph, Hendrik Rothe und Dorothee Huser. „Large AFM scans with a Nanometer Coordinate Measuring Machine“. In International Symposium on Optical Science and Technology, herausgegeben von Angela Duparr und Bhanwar Singh. SPIE, 2002. http://dx.doi.org/10.1117/12.451749.
Der volle Inhalt der QuelleQiu, Jianxin, Liang Tan und Xiaodong Xu. „3-D measuring of engine camshaft based on machine vision“. In International Conference of Optical Instrument and Technology, herausgegeben von Shenghua Ye, Guangjun Zhang und Jun Ni. SPIE, 2008. http://dx.doi.org/10.1117/12.806895.
Der volle Inhalt der QuelleThurston, Debra L., und Alexander H. Slocum. „Kinematic Transmission Design For The Atomic Resolution Measuring Machine (ARMM)“. In OPTCON '88 Conferences--Applications of Optical Engineering, herausgegeben von Thomas C. Bristow und Alson E. Hatheway. SPIE, 1989. http://dx.doi.org/10.1117/12.950974.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Optical measuring machine"
Jacobs, Stephen D. Coordinate Measuring Machine for Characterizing Conformal Optics. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada393371.
Der volle Inhalt der Quelle