Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optical field manipulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optical field manipulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optical field manipulation"
Zhao, Xiaoting, Nan Zhao, Yang Shi, Hongbao Xin und Baojun Li. „Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation“. Micromachines 11, Nr. 2 (21.01.2020): 114. http://dx.doi.org/10.3390/mi11020114.
Der volle Inhalt der QuelleShi, Yuzhi, Qinghua Song, Ivan Toftul, Tongtong Zhu, Yefeng Yu, Weiming Zhu, Din Ping Tsai, Yuri Kivshar und Ai Qun Liu. „Optical manipulation with metamaterial structures“. Applied Physics Reviews 9, Nr. 3 (September 2022): 031303. http://dx.doi.org/10.1063/5.0091280.
Der volle Inhalt der QuelleRuiz-Cortés, Victor, und Juan P. Vite-Frías. „Lensless optical manipulation with an evanescent field“. Optics Express 16, Nr. 9 (24.04.2008): 6600. http://dx.doi.org/10.1364/oe.16.006600.
Der volle Inhalt der QuelleWang, Shuai, Xuewei Wang, Fucheng You und Han Xiao. „Review of Ultrasonic Particle Manipulation Techniques: Applications and Research Advances“. Micromachines 14, Nr. 8 (25.07.2023): 1487. http://dx.doi.org/10.3390/mi14081487.
Der volle Inhalt der QuelleWang, Genwang, Ye Ding, Haotian Long, Yanchao Guan, Xiwen Lu, Yang Wang und Lijun Yang. „Simulation of Optical Nano-Manipulation with Metallic Single and Dual Probe Irradiated by Polarized Near-Field Laser“. Applied Sciences 12, Nr. 2 (13.01.2022): 815. http://dx.doi.org/10.3390/app12020815.
Der volle Inhalt der QuelleAnnadhasan, Mari, Avulu Vinod Kumar, Jada Ravi, Evgeny Mamonov, Tatiana Murzina und Rajadurai Chandrasekar. „Magnetic Field–Assisted Manipulation of Polymer Optical Microcavities“. Advanced Photonics Research 2, Nr. 4 (25.02.2021): 2000146. http://dx.doi.org/10.1002/adpr.202000146.
Der volle Inhalt der QuelleRui, Guanghao, und Qiwen Zhan. „Trapping of resonant metallic nanoparticles with engineered vectorial optical field“. Nanophotonics 3, Nr. 6 (01.12.2014): 351–61. http://dx.doi.org/10.1515/nanoph-2014-0006.
Der volle Inhalt der QuelleAhmed, Hammad, Hongyoon Kim, Yuebian Zhang, Yuttana Intaravanne, Jaehyuck Jang, Junsuk Rho, Shuqi Chen und Xianzhong Chen. „Optical metasurfaces for generating and manipulating optical vortex beams“. Nanophotonics 11, Nr. 5 (10.01.2022): 941–56. http://dx.doi.org/10.1515/nanoph-2021-0746.
Der volle Inhalt der QuelleLuo, Xiangang, Mingbo Pu, Fei Zhang, Mingfeng Xu, Yinghui Guo, Xiong Li und Xiaoliang Ma. „Vector optical field manipulation via structural functional materials: Tutorial“. Journal of Applied Physics 131, Nr. 18 (14.05.2022): 181101. http://dx.doi.org/10.1063/5.0089859.
Der volle Inhalt der QuelleBerthelot, J., S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger und R. Quidant. „Three-dimensional manipulation with scanning near-field optical nanotweezers“. Nature Nanotechnology 9, Nr. 4 (02.03.2014): 295–99. http://dx.doi.org/10.1038/nnano.2014.24.
Der volle Inhalt der QuelleDissertationen zum Thema "Optical field manipulation"
Ganic, Djenan, und dga@rovsing dk. „Far-field and near-field optical trapping“. Swinburne University of Technology. Centre for Micro-Photonics, 2005. http://adt.lib.swin.edu.au./public/adt-VSWT20051130.135436.
Der volle Inhalt der QuelleGanic, Djenan. „Far-field and near-field optical trapping“. Australasian Digital Thesis Program, 2005. http://adt.lib.swin.edu.au/public/adt-VSWT20051130.135436.
Der volle Inhalt der QuelleA thesis submitted for the degree of Doctor of Philosophy, Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, 2005. Typescript. Includes bibliographical references (p. 164-177). Also available on cd-rom.
Morrish, Dru, und DruMorrish@gmail com. „Morphology dependent resonance of a microscope and its application in near-field scanning optical microscopy“. Swinburne University of Technology. Centre for Micro-Photonics, 2005. http://adt.lib.swin.edu.au./public/adt-VSWT20051124.121838.
Der volle Inhalt der QuelleRenaut, Claude. „Nanopinces optiques sur puce pour la manipulation de particules diélectriques“. Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOS010/document.
Der volle Inhalt der QuelleOn chips optical nanocavities have become useful tools for trapping and manipulation of colloidal objects. In this thesis we study the nanocavities as building blocks for optical forces, trapping and handling of particles. Proof of concept of trapping dielectric microspheres appears as the starting point of the development of lab on chip. In the first chapter we go through the literature of optical forces in free space and integrated optics. The second chapter presents the experimental tools for the characterization of nanocavities and the set-up developed to perform optical measurements with the colloidal particles. The third chapter describes the proof-of-concept trapping of polystyrene particles of 500 nm, 1 and 2 µm. In the following chapter we analyze the particle trapping as function of the injected power into the cavities. The chapter five gives some examples of the possibilities of particles handling functions with coupled cavities. Eventually, in the last chapter we show assemblies of particles on different geometry of cavities studied in this thesis
Yang, Xingyu. „Manipulating the inverse Faraday effect at the nanoscale“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS219.
Der volle Inhalt der QuelleLight-induced magnetism describes the effect where a material is magnetized by an optical pulse. In transparent materials, optically-induced magnetization can be realized directly by circularly polarized light. Sometimes, in metallic materials, this type of magnetization also exists due to the microscopic solenoidal path of electrons driven by circularly polarized light. In some cases, the light creates macroscopic circulating DC drift currents, which also induce DC magnetization in metal. In a broad sense, these light-induced magnetisms are known as the inverse Faraday effect.In the PhD project, I studied light-induced drift currents in multiple gold nanoantennas. We realized plasmonically enhanced stationary magnetic fields through these drift currents. The study is based on the Finite-Difference Time-Domain (FDTD) method and the corresponding light-induced magnetism theories. In different research topics, we have realized: 1) an ultrafast, confined, and strong stationary magnetic field in a bull-eye nanoantenna. 2) A stationary magnetic field through linear polarization in a nanorod. 3) A Neel-type skyrmion constructed by a stationary magnetic field in a nanoring. In these studies, we examined the optical properties of different nanoantennas and explained the physical origin of light-induced drift currents and stationary magnetic fields. We demonstrated the method to achieve plasmonically enhanced inverse Faraday effects and explored the possibility of realizing magnetization through linearly polarized incident light. Finally, we extended the inverse Faraday effect to more physical research areas, such as constructing skyrmions by stationary magnetic fields through the inverse Faraday effect.The magnetic effect of light remains a rich area of research. My studies might find applications in many areas, including magneto-optical materials and devices, optical data storage, biomedical applications, spintronics, quantum computing, fundamental research in electromagnetism, and advanced materials research
Fulton, Ray. „Atomic and molecular manipulation in pulsed optical fields“. Thesis, Heriot-Watt University, 2006. http://hdl.handle.net/10399/125.
Der volle Inhalt der QuellePritchard, Matthew J. „Manipulation of ultracold atoms using magnetic and optical fields“. Thesis, Durham University, 2006. http://etheses.dur.ac.uk/2373/.
Der volle Inhalt der QuelleLowney, Joseph Daniel. „Manipulating and Probing Angular Momentum and Quantized Circulation in Optical Fields and Matter Waves“. Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612898.
Der volle Inhalt der QuelleSergides, M. „Optical manipulation of micro- and nano-particles using evanescent fields“. Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1410938/.
Der volle Inhalt der QuelleBraun, Marco. „Optically Controlled Manipulation of Single Nano-Objects by Thermal Fields“. Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-206342.
Der volle Inhalt der QuelleBücher zum Thema "Optical field manipulation"
Ohtsu, Motoichi. Progress in Nano-Electro-Optics VI: Nano-Optical Probing, Manipulation, Analysis, and Their Theoretical Bases. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Structured Light Fields: Applications in Optical Trapping, Manipulation, and Organisation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenLi, Lin. Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton. Springer, 2018.
Den vollen Inhalt der Quelle findenLi, Lin. Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton. Springer, 2017.
Den vollen Inhalt der Quelle findenStructured Light Fields Applications In Optical Trapping Manipulation And Organisation. Springer, 2012.
Den vollen Inhalt der Quelle findenWördemann, Mike. Structured Light Fields: Applications in Optical Trapping, Manipulation, and Organisation. Springer Berlin / Heidelberg, 2014.
Den vollen Inhalt der Quelle findenWördemann, Mike. Structured Light Fields: Applications in Optical Trapping, Manipulation, and Organisation. Springer, 2012.
Den vollen Inhalt der Quelle findenComputational Strong-Field Quantum Dynamics: Intense Light-Matter Interactions. de Gruyter GmbH, Walter, 2017.
Den vollen Inhalt der Quelle findenBrabec, Thomas, Dieter Bauer, Heiko Bauke, Thomas Fennel und Chris R. McDonald. Computational Strong-Field Quantum Dynamics: Intense Light-Matter Interactions. de Gruyter GmbH, Walter, 2017.
Den vollen Inhalt der Quelle findenBrabec, Thomas, Dieter Bauer, Heiko Bauke, Thomas Fennel und Chris R. McDonald. Computational Strong-Field Quantum Dynamics: Intense Light-Matter Interactions. de Gruyter GmbH, Walter, 2017.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Optical field manipulation"
Ohtsu, Motoichi. „Near-Field Optical Atom Manipulation: Toward Atom Photonics“. In Near-field Nano/Atom Optics and Technology, 217–66. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-67937-0_11.
Der volle Inhalt der QuelleHori, Hirokazu. „Quantum Optical Picture of Photon STM and Proposal of Single Atom Manipulation“. In Near Field Optics, 105–14. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_13.
Der volle Inhalt der QuelleAntignus, Yehezkel. „Optical Manipulation for Control of Bemisia tabaci and Its Vectored Viruses in the Greenhouse and Open Field“. In Bemisia: Bionomics and Management of a Global Pest, 349–56. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2460-2_13.
Der volle Inhalt der QuelleOhtsu, Motoichi, und Hirokazu Hori. „Fabrication and Manipulation“. In Near-Field Nano-Optics, 209–33. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4835-5_7.
Der volle Inhalt der QuelleOhtsu, M., S. Jiang, T. Pangaribuan und M. Kozuma. „Nanometer Resolution Photon STM and Single Atom Manipulation“. In Near Field Optics, 131–39. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_16.
Der volle Inhalt der QuelleVogel, K., W. P. Schleich und G. Kurizki. „Manipulation of Cavity Field States with Multi-Level Atoms“. In Coherence and Quantum Optics VII, 589–90. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_166.
Der volle Inhalt der QuelleGill, Jonathan V., Gilad M. Lerman, Edmund Chong, Dmitry Rinberg und Shy Shoham. „Illuminating Neural Computation Using Precision Optogenetics-Controlled Synthetic Perception“. In Neuromethods, 363–92. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_12.
Der volle Inhalt der QuelleCovey, Jacob P. „New Physics with the New Apparatus: High Resolution Optical Detection and Large, Stable Electric Fields“. In Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules, 219–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98107-9_10.
Der volle Inhalt der QuelleTang, Lei, und Keyu Xia. „Optical Chirality and Single-Photon Isolation“. In Single Photon Manipulation. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.90354.
Der volle Inhalt der QuelleRoychoudhuri, ChandraSekhar. „Do We Manipulate Photons or Diffractive EM Waves to Generate Structured Light?“ In Single Photon Manipulation. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.88849.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optical field manipulation"
Zhao, Chenglong, Geonsoo Jin und Tony Jun Huang. „Acoustofluidic Scanning Nanoscope for Large Field-of-view Imaging“. In Optical Manipulation and Its Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/oma.2023.atu1d.4.
Der volle Inhalt der QuelleSadgrove, M., A. Suda, R. Matsuyama, M. Komiya, T. Yoshino, D. Yamaura, M. Sugawara et al. „Liposome manipulation using the evanescent field of an optical nanofiber“. In Optical Manipulation and Its Applications. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/oma.2021.aw4d.4.
Der volle Inhalt der QuelleReece, Peter J., Veneranda Garcés-Chávez und Kishan Dholakia. „Near-field optical manipulation with cavity enhanced evanescent fields“. In Integrated Optoelectronic Devices 2006, herausgegeben von David L. Andrews. SPIE, 2006. http://dx.doi.org/10.1117/12.660814.
Der volle Inhalt der QuelleRui, Guanghao, Bing Gu und Yiping Cui. „Manipulation of nanoparticles with tailored optical focal field“. In Optical Manipulation and Structured Materials Conference, herausgegeben von Takashige Omatsu. SPIE, 2018. http://dx.doi.org/10.1117/12.2319002.
Der volle Inhalt der QuelleMansuripur, Masud. „Self-field, radiated energy, and radiated linear momentum of an accelerated point charge“. In Optical Manipulation and Its Applications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oma.2019.am3e.1.
Der volle Inhalt der QuelleDeng, Zi-Lan. „Vectorial metagrating for multidimensional optical field manipulation“. In Plasmonics VI, herausgegeben von Zheyu Fang und Takuo Tanaka. SPIE, 2021. http://dx.doi.org/10.1117/12.2602471.
Der volle Inhalt der QuelleYamanishi, Junsuke, Hyo-yong Ahn und Hiromi Okamoto. „Nanoscopic visualization of chiro-optical field in photoinduced force microscopy“. In Optical Manipulation and Structured Materials Conference, herausgegeben von Takashige Omatsu, Síle N. Chormaic und Kishan Dholakia. SPIE, 2023. http://dx.doi.org/10.1117/12.3008343.
Der volle Inhalt der QuelleSchmieder, Felix, Rouhollah Habibey, Volker Busskamp, Lars Büttner und Jürgen W. Czarske. „Correlation analysis of human iPSC-derived neuronal networks using holographic single cell and full field stimulation“. In Optogenetics and Optical Manipulation 2021, herausgegeben von Samarendra K. Mohanty, Anna W. Roe und Shy Shoham. SPIE, 2021. http://dx.doi.org/10.1117/12.2583240.
Der volle Inhalt der QuelleIto, Haruhiko, K. Otake und Motoichi Ohtsu. „Near-field optical guidance and manipulation of atoms“. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von Suganda Jutamulia und Toshimitsu Asakura. SPIE, 1998. http://dx.doi.org/10.1117/12.326826.
Der volle Inhalt der QuelleAwfi, Khalid Al, Vassilis E. Lembessis und Omar M. Aldosssary. „On optical tweezers forces exerted by tightly focused optical vortices“. In Optical Manipulation and Its Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/oma.2023.atu3d.2.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Optical field manipulation"
Bukosky, S. Manipulation of Colloidal Aggregation Behavior and Optical PropertiesUsing Applied Electric Fields. Office of Scientific and Technical Information (OSTI), Oktober 2018. http://dx.doi.org/10.2172/1524724.
Der volle Inhalt der Quelle