Zeitschriftenartikel zum Thema „Online ensemble regression“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Online ensemble regression" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Liu, Yang, Bo He, Diya Dong, Yue Shen, Tianhong Yan, Rui Nian und Amaury Lendasse. „Particle Swarm Optimization Based Selective Ensemble of Online Sequential Extreme Learning Machine“. Mathematical Problems in Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/504120.
Der volle Inhalt der QuelleRahmawati, Eka, und Candra Agustina. „Implementasi Teknik Bagging untuk Peningkatan Kinerja J48 dan Logistic Regression dalam Prediksi Minat Pembelian Online“. Jurnal Teknologi Informasi dan Terapan 7, Nr. 1 (09.06.2020): 16–19. http://dx.doi.org/10.25047/jtit.v7i1.123.
Der volle Inhalt der QuelleHansrajh, Arvin, Timothy T. Adeliyi und Jeanette Wing. „Detection of Online Fake News Using Blending Ensemble Learning“. Scientific Programming 2021 (28.07.2021): 1–10. http://dx.doi.org/10.1155/2021/3434458.
Der volle Inhalt der QuelleZhang, Junbo, C. Y. Chung und Lin Guan. „Noise Effect and Noise-Assisted Ensemble Regression in Power System Online Sensitivity Identification“. IEEE Transactions on Industrial Informatics 13, Nr. 5 (Oktober 2017): 2302–10. http://dx.doi.org/10.1109/tii.2017.2671351.
Der volle Inhalt der QuelleAzeez, Nureni Ayofe, und Emad Fadhal. „Classification of Virtual Harassment on Social Networks Using Ensemble Learning Techniques“. Applied Sciences 13, Nr. 7 (04.04.2023): 4570. http://dx.doi.org/10.3390/app13074570.
Der volle Inhalt der QuelleBodyanskiy, Ye V., Kh V. Lipianina-Honcharenko und A. O. Sachenko. „ENSEMBLE OF ADAPTIVE PREDICTORS FOR MULTIVARIATE NONSTATIONARY SEQUENCES AND ITS ONLINE LEARNING“. Radio Electronics, Computer Science, Control, Nr. 4 (02.01.2024): 91. http://dx.doi.org/10.15588/1607-3274-2023-4-9.
Der volle Inhalt der QuelleR, Chitra A., und Dr Arjun B. C. „Performance Analysis of Regression Algorithms for Used Car Price Prediction: KNIME Analytics Platform“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 2 (28.02.2023): 1324–31. http://dx.doi.org/10.22214/ijraset.2023.49180.
Der volle Inhalt der QuelleSetiawan, Yahya, Jondri Jondri und Widi Astuti. „Twitter Sentiment Analysis on Online Transportation in Indonesia Using Ensemble Stacking“. JURNAL MEDIA INFORMATIKA BUDIDARMA 6, Nr. 3 (25.07.2022): 1452. http://dx.doi.org/10.30865/mib.v6i3.4359.
Der volle Inhalt der Quellede Almeida, Ricardo, Yee Mey Goh, Radmehr Monfared, Maria Teresinha Arns Steiner und Andrew West. „An ensemble based on neural networks with random weights for online data stream regression“. Soft Computing 24, Nr. 13 (09.11.2019): 9835–55. http://dx.doi.org/10.1007/s00500-019-04499-x.
Der volle Inhalt der QuelleKothapalli. Mandakini, Et al. „Ensemble Learning for fraud detection in Online Payment System“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 10 (02.11.2023): 1070–76. http://dx.doi.org/10.17762/ijritcc.v11i10.8626.
Der volle Inhalt der QuellePutri, Anastasia Kinanti, und Hari Suparwito. „Uji Algoritma Stacking Ensemble Classifier pada Kemampuan Adaptasi Mahasiswa Baru dalam Pembelajaran Online“. KONSTELASI: Konvergensi Teknologi dan Sistem Informasi 3, Nr. 1 (07.06.2023): 1–12. http://dx.doi.org/10.24002/konstelasi.v3i1.7009.
Der volle Inhalt der QuelleZheng, Shuihua, Kaixin Liu, Yili Xu, Hao Chen, Xuelei Zhang und Yi Liu. „Robust Soft Sensor with Deep Kernel Learning for Quality Prediction in Rubber Mixing Processes“. Sensors 20, Nr. 3 (27.01.2020): 695. http://dx.doi.org/10.3390/s20030695.
Der volle Inhalt der QuelleLalloué, Benoît, Jean-Marie Monnez und Eliane Albuisson. „Construction and Update of an Online Ensemble Score Involving Linear Discriminant Analysis and Logistic Regression“. Applied Mathematics 13, Nr. 02 (2022): 228–42. http://dx.doi.org/10.4236/am.2022.132018.
Der volle Inhalt der QuelleUdayana, I. Putu Agus Eka Darma, Ni Putu Eka Kherismawati und I. Gede Iwan Sudipa. „Detection of Student Drowsiness Using Ensemble Regression Trees in Online Learning During a COVID-19 Pandemic“. Telematika 19, Nr. 2 (30.06.2022): 229. http://dx.doi.org/10.31315/telematika.v19i2.7044.
Der volle Inhalt der QuelleLee, Sangjae, und Joon Yeon Choeh. „Exploring the influence of online word-of-mouth on hotel booking prices: insights from regression and ensemble-based machine learning methods“. Data Science in Finance and Economics 4, Nr. 1 (2024): 65–82. http://dx.doi.org/10.3934/dsfe.2024003.
Der volle Inhalt der QuelleKadam, Aishwarya. „WEB MINING TO DETECT ONLINE SPREAD OF TERRORISM“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 04 (21.04.2024): 1–5. http://dx.doi.org/10.55041/ijsrem31243.
Der volle Inhalt der QuelleSaleh Hussein, Ameer, Rihab Salah Khairy, Shaima Miqdad Mohamed Najeeb und Haider Th Salim Alrikabi. „Credit Card Fraud Detection Using Fuzzy Rough Nearest Neighbor and Sequential Minimal Optimization with Logistic Regression“. International Journal of Interactive Mobile Technologies (iJIM) 15, Nr. 05 (16.03.2021): 24. http://dx.doi.org/10.3991/ijim.v15i05.17173.
Der volle Inhalt der QuelleJin, Huaiping, Xiangguang Chen, Li Wang, Kai Yang und Lei Wu. „Adaptive Soft Sensor Development Based on Online Ensemble Gaussian Process Regression for Nonlinear Time-Varying Batch Processes“. Industrial & Engineering Chemistry Research 54, Nr. 30 (28.07.2015): 7320–45. http://dx.doi.org/10.1021/acs.iecr.5b01495.
Der volle Inhalt der QuelleJin, Huaiping, Xiangguang Chen, Li Wang, Kai Yang und Lei Wu. „Dual learning-based online ensemble regression approach for adaptive soft sensor modeling of nonlinear time-varying processes“. Chemometrics and Intelligent Laboratory Systems 151 (Februar 2016): 228–44. http://dx.doi.org/10.1016/j.chemolab.2016.01.009.
Der volle Inhalt der QuelleZhou, Zhiyu, Xu Gao, Jianxin Zhang, Zefei Zhu und Xudong Hu. „A novel hybrid model using the rotation forest-based differential evolution online sequential extreme learning machine for illumination correction of dyed fabrics“. Textile Research Journal 89, Nr. 7 (20.03.2018): 1180–97. http://dx.doi.org/10.1177/0040517518764020.
Der volle Inhalt der QuelleBokolo, Biodoumoye George, und Qingzhong Liu. „Advanced Algorithmic Approaches for Scam Profile Detection on Instagram“. Electronics 13, Nr. 8 (19.04.2024): 1571. http://dx.doi.org/10.3390/electronics13081571.
Der volle Inhalt der QuelleBudiman, Arif, Mohamad Ivan Fanany und Chan Basaruddin. „Adaptive Online Sequential ELM for Concept Drift Tackling“. Computational Intelligence and Neuroscience 2016 (2016): 1–17. http://dx.doi.org/10.1155/2016/8091267.
Der volle Inhalt der QuelleKaneko, Hiromasa, und Kimito Funatsu. „Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants“. Chemometrics and Intelligent Laboratory Systems 137 (Oktober 2014): 57–66. http://dx.doi.org/10.1016/j.chemolab.2014.06.008.
Der volle Inhalt der QuelleSantoso, Dwi Budi, Aliyatul Munna und Dewi Handayani Untari Ningsih. „Improved playstore review sentiment classification accuracy with stacking ensemble“. Journal of Soft Computing Exploration 5, Nr. 1 (18.03.2024): 38–45. http://dx.doi.org/10.52465/joscex.v5i1.247.
Der volle Inhalt der QuelleAsad, Rimsha, Saud Altaf, Shafiq Ahmad, Haitham Mahmoud, Shamsul Huda und Sofia Iqbal. „Machine Learning-Based Hybrid Ensemble Model Achieving Precision Education for Online Education Amid the Lockdown Period of COVID-19 Pandemic in Pakistan“. Sustainability 15, Nr. 6 (19.03.2023): 5431. http://dx.doi.org/10.3390/su15065431.
Der volle Inhalt der QuellePacol, Caren Ambat. „Sentiment Analysis of Students’ Feedback on Faculty Online Teaching Performance Using Machine Learning Techniques“. WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS 21 (19.02.2024): 65–76. http://dx.doi.org/10.37394/23209.2024.21.7.
Der volle Inhalt der QuelleGiamarelos, Nikolaos, Myron Papadimitrakis, Marios Stogiannos, Elias N. Zois, Nikolaos-Antonios I. Livanos und Alex Alexandridis. „A Machine Learning Model Ensemble for Mixed Power Load Forecasting across Multiple Time Horizons“. Sensors 23, Nr. 12 (08.06.2023): 5436. http://dx.doi.org/10.3390/s23125436.
Der volle Inhalt der QuelleGaikwad, D. P., Vismita Nagrale und M. P. Bauskar. „Ensemble of Learner for Network Intrusion Detection System“. Journal of Network Security Computer Networks 9, Nr. 1 (06.04.2023): 25–34. http://dx.doi.org/10.46610/jonscn.2023.v09i01.004.
Der volle Inhalt der QuelleJin, Huaiping, Jiangang Li, Meng Wang, Bin Qian, Biao Yang, Zheng Li und Lixian Shi. „Ensemble Just-In-Time Learning-Based Soft Sensor for Mooney Viscosity Prediction in an Industrial Rubber Mixing Process“. Advances in Polymer Technology 2020 (27.03.2020): 1–14. http://dx.doi.org/10.1155/2020/6575326.
Der volle Inhalt der QuelleFayaz, Muhammad, Atif Khan, Javid Ur Rahman, Abdullah Alharbi, M. Irfan Uddin und Bader Alouffi. „Ensemble Machine Learning Model for Classification of Spam Product Reviews“. Complexity 2020 (17.12.2020): 1–10. http://dx.doi.org/10.1155/2020/8857570.
Der volle Inhalt der QuelleOchola, Dennis, Bastiaen Boekelo, Gerrie W. J. van de Ven, Godfrey Taulya, Jerome Kubiriba, Piet J. A. van Asten und Ken E. Giller. „Mapping spatial distribution and geographic shifts of East African highland banana (Musa spp.) in Uganda“. PLOS ONE 17, Nr. 2 (17.02.2022): e0263439. http://dx.doi.org/10.1371/journal.pone.0263439.
Der volle Inhalt der QuelleAslam, Naila, Kewen Xia, Furqan Rustam, Ernesto Lee und Imran Ashraf. „Self voting classification model for online meeting app review sentiment analysis and topic modeling“. PeerJ Computer Science 8 (15.12.2022): e1141. http://dx.doi.org/10.7717/peerj-cs.1141.
Der volle Inhalt der QuelleYang, Kai, Huaiping Jin, Xiangguang Chen, Jiayu Dai, Li Wang und Dongxiang Zhang. „Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models“. Chemometrics and Intelligent Laboratory Systems 155 (Juli 2016): 170–82. http://dx.doi.org/10.1016/j.chemolab.2016.04.009.
Der volle Inhalt der QuelleKhozouie, Nasim, Omid Rahmani Seryasat und Sadegh Moshrefzadeh. „Prediction of Diabetes using Supervised Learning Approach“. Health Nexus 2, Nr. 2 (2024): 103–11. http://dx.doi.org/10.61838/kman.hn.2.2.12.
Der volle Inhalt der QuellePradeep K V, Rajarajeshwari S, Sujay Doshi, D. Yuvaraj, Nachiyappan S,. „Ensemble Learning-Based Browser Extension for Mitigating Cyber Attacks Carried out using Malicious Short URLs“. Journal of Electrical Systems 20, Nr. 3s (04.04.2024): 158–69. http://dx.doi.org/10.52783/jes.1264.
Der volle Inhalt der QuelleSanthiya, S., und C. S. KanimozhiSelvi. „A study on dyslexia detection using machine learning techniques for checklist, questionnaire and online game based datasets“. Applied and Computational Engineering 5, Nr. 1 (14.06.2023): 837–42. http://dx.doi.org/10.54254/2755-2721/5/20230722.
Der volle Inhalt der QuelleAbidi, Syed Muhammad Raza, Wu Zhang, Saqib Ali Haidery, Sanam Shahla Rizvi, Rabia Riaz, Hu Ding und Se Jin Kwon. „Educational Sustainability through Big Data Assimilation to Quantify Academic Procrastination Using Ensemble Classifiers“. Sustainability 12, Nr. 15 (28.07.2020): 6074. http://dx.doi.org/10.3390/su12156074.
Der volle Inhalt der QuelleOtorokpo, Emakpor Augustine, Margaret Dumebi Okpor, Rume Elizabeth Yoro, Success Endurance Brizimor, Ayo Michael Ifioko, Dickson Abiodun Obasuyi, Chris Chukwufunaya Odiakaose et al. „DaBO-BoostE: Enhanced Data Balancing via Oversampling Technique for a Boosting Ensemble in Card-Fraud Detection“. Advances in Multidisciplinary & Scientific Research Journal Publications 12 (2024): 45–66. http://dx.doi.org/10.22624/aims/maths/v12n2p4.
Der volle Inhalt der QuelleAlajali, Walaa, Wei Zhou, Sheng Wen und Yu Wang. „Intersection Traffic Prediction Using Decision Tree Models“. Symmetry 10, Nr. 9 (07.09.2018): 386. http://dx.doi.org/10.3390/sym10090386.
Der volle Inhalt der QuelleIsiaka, Dauda Olorunkemi, Joshua Babatunde Agbogun und Taiwo Kolajo. „A Framework for Predictive - Diagnosis of Prevalent Illness among University Students“. Journal of Applied Artificial Intelligence 3, Nr. 2 (31.12.2022): 24–38. http://dx.doi.org/10.48185/jaai.v3i2.667.
Der volle Inhalt der QuelleLee, Sangjae, und Joon Yeon Choeh. „Movie Production Efficiency Moderating between Online Word-of-Mouth and Subsequent Box Office Revenue“. Sustainability 12, Nr. 16 (14.08.2020): 6602. http://dx.doi.org/10.3390/su12166602.
Der volle Inhalt der QuelleAlqahtani, Hassan, und Asok Ray. „Neural Network-Based Automated Assessment of Fatigue Damage in Mechanical Structures“. Machines 8, Nr. 4 (16.12.2020): 85. http://dx.doi.org/10.3390/machines8040085.
Der volle Inhalt der QuelleChen, Yifei, Zhenyu Jia, Dan Mercola und Xiaohui Xie. „A Gradient Boosting Algorithm for Survival Analysis via Direct Optimization of Concordance Index“. Computational and Mathematical Methods in Medicine 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/873595.
Der volle Inhalt der QuelleAli, Hashir, Ehtesham Hashmi, Sule Yayilgan Yildirim und Sarang Shaikh. „Analyzing Amazon Products Sentiment: A Comparative Study of Machine and Deep Learning, and Transformer-Based Techniques“. Electronics 13, Nr. 7 (31.03.2024): 1305. http://dx.doi.org/10.3390/electronics13071305.
Der volle Inhalt der QuelleYin, Zhijun, Lina M. Sulieman und Bradley A. Malin. „A systematic literature review of machine learning in online personal health data“. Journal of the American Medical Informatics Association 26, Nr. 6 (25.03.2019): 561–76. http://dx.doi.org/10.1093/jamia/ocz009.
Der volle Inhalt der QuelleMassey, Alexander, Corentin Boennec, Claudia Ximena Restrepo-Ortiz, Christophe Blanchet, Samuel Alizon und Mircea T. Sofonea. „Real-time forecasting of COVID-19-related hospital strain in France using a non-Markovian mechanistic model“. PLOS Computational Biology 20, Nr. 5 (17.05.2024): e1012124. http://dx.doi.org/10.1371/journal.pcbi.1012124.
Der volle Inhalt der QuelleZhang, Yanju, Ruopeng Xie, Jiawei Wang, André Leier, Tatiana T. Marquez-Lago, Tatsuya Akutsu, Geoffrey I. Webb, Kuo-Chen Chou und Jiangning Song. „Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework“. Briefings in Bioinformatics 20, Nr. 6 (24.08.2018): 2185–99. http://dx.doi.org/10.1093/bib/bby079.
Der volle Inhalt der QuelleWang, Peng, und Zhengliang Xu. „A Novel Consumer Purchase Behavior Recognition Method Using Ensemble Learning Algorithm“. Mathematical Problems in Engineering 2020 (19.12.2020): 1–10. http://dx.doi.org/10.1155/2020/6673535.
Der volle Inhalt der QuelleCorrea, Ramon Santos, Patricia Teixeira Sampaio, Rafael Utsch Braga, Victor Alberto Lambertucci, Gustavo Matheus Almeida und Antonio Padua Braga. „Prediction of Mechanical Properties of Seamless Steel Tubes Using Artificial Neural Networks“. International Journal of Computational Intelligence and Applications 19, Nr. 04 (15.10.2020): 2050028. http://dx.doi.org/10.1142/s1469026820500285.
Der volle Inhalt der QuelleAlarfaj, Fawaz Khaled, und Jawad Abbas Khan. „Deep Dive into Fake News Detection: Feature-Centric Classification with Ensemble and Deep Learning Methods“. Algorithms 16, Nr. 11 (03.11.2023): 507. http://dx.doi.org/10.3390/a16110507.
Der volle Inhalt der Quelle