Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Online ensemble regression“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Online ensemble regression" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Online ensemble regression"
Liu, Yang, Bo He, Diya Dong, Yue Shen, Tianhong Yan, Rui Nian und Amaury Lendasse. „Particle Swarm Optimization Based Selective Ensemble of Online Sequential Extreme Learning Machine“. Mathematical Problems in Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/504120.
Der volle Inhalt der QuelleRahmawati, Eka, und Candra Agustina. „Implementasi Teknik Bagging untuk Peningkatan Kinerja J48 dan Logistic Regression dalam Prediksi Minat Pembelian Online“. Jurnal Teknologi Informasi dan Terapan 7, Nr. 1 (09.06.2020): 16–19. http://dx.doi.org/10.25047/jtit.v7i1.123.
Der volle Inhalt der QuelleHansrajh, Arvin, Timothy T. Adeliyi und Jeanette Wing. „Detection of Online Fake News Using Blending Ensemble Learning“. Scientific Programming 2021 (28.07.2021): 1–10. http://dx.doi.org/10.1155/2021/3434458.
Der volle Inhalt der QuelleZhang, Junbo, C. Y. Chung und Lin Guan. „Noise Effect and Noise-Assisted Ensemble Regression in Power System Online Sensitivity Identification“. IEEE Transactions on Industrial Informatics 13, Nr. 5 (Oktober 2017): 2302–10. http://dx.doi.org/10.1109/tii.2017.2671351.
Der volle Inhalt der QuelleAzeez, Nureni Ayofe, und Emad Fadhal. „Classification of Virtual Harassment on Social Networks Using Ensemble Learning Techniques“. Applied Sciences 13, Nr. 7 (04.04.2023): 4570. http://dx.doi.org/10.3390/app13074570.
Der volle Inhalt der QuelleBodyanskiy, Ye V., Kh V. Lipianina-Honcharenko und A. O. Sachenko. „ENSEMBLE OF ADAPTIVE PREDICTORS FOR MULTIVARIATE NONSTATIONARY SEQUENCES AND ITS ONLINE LEARNING“. Radio Electronics, Computer Science, Control, Nr. 4 (02.01.2024): 91. http://dx.doi.org/10.15588/1607-3274-2023-4-9.
Der volle Inhalt der QuelleR, Chitra A., und Dr Arjun B. C. „Performance Analysis of Regression Algorithms for Used Car Price Prediction: KNIME Analytics Platform“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 2 (28.02.2023): 1324–31. http://dx.doi.org/10.22214/ijraset.2023.49180.
Der volle Inhalt der QuelleSetiawan, Yahya, Jondri Jondri und Widi Astuti. „Twitter Sentiment Analysis on Online Transportation in Indonesia Using Ensemble Stacking“. JURNAL MEDIA INFORMATIKA BUDIDARMA 6, Nr. 3 (25.07.2022): 1452. http://dx.doi.org/10.30865/mib.v6i3.4359.
Der volle Inhalt der Quellede Almeida, Ricardo, Yee Mey Goh, Radmehr Monfared, Maria Teresinha Arns Steiner und Andrew West. „An ensemble based on neural networks with random weights for online data stream regression“. Soft Computing 24, Nr. 13 (09.11.2019): 9835–55. http://dx.doi.org/10.1007/s00500-019-04499-x.
Der volle Inhalt der QuelleKothapalli. Mandakini, Et al. „Ensemble Learning for fraud detection in Online Payment System“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 10 (02.11.2023): 1070–76. http://dx.doi.org/10.17762/ijritcc.v11i10.8626.
Der volle Inhalt der QuelleDissertationen zum Thema "Online ensemble regression"
Conesa, Gago Agustin. „Methods to combine predictions from ensemble learning in multivariate forecasting“. Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103600.
Der volle Inhalt der QuellePeng, Tao. „Analyse de données loT en flux“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0649.
Der volle Inhalt der QuelleSince the advent of the IoT (Internet of Things), we have witnessed an unprecedented growth in the amount of data generated by sensors. To exploit this data, we first need to model it, and then we need to develop analytical algorithms to process it. For the imputation of missing data from a sensor f, we propose ISTM (Incremental Space-Time Model), an incremental multiple linear regression model adapted to non-stationary data streams. ISTM updates its model by selecting: 1) data from sensors located in the neighborhood of f, and 2) the near-past most recent data gathered from f. To evaluate data trustworthiness, we propose DTOM (Data Trustworthiness Online Model), a prediction model that relies on online regression ensemble methods such as AddExp (Additive Expert) and BNNRW (Bagging NNRW) for assigning a trust score in real time. DTOM consists: 1) an initialization phase, 2) an estimation phase, and 3) a heuristic update phase. Finally, we are interested predicting multiple outputs STS in presence of imbalanced data, i.e. when there are more instances in one value interval than in another. We propose MORSTS, an online regression ensemble method, with specific features: 1) the sub-models are multiple output, 2) adoption of a cost sensitive strategy i.e. the incorrectly predicted instance has a higher weight, and 3) management of over-fitting by means of k-fold cross-validation. Experimentation with with real data has been conducted and the results were compared with reknown techniques
Buchteile zum Thema "Online ensemble regression"
Osojnik, Aljaž, Panče Panov und Sašo Džeroski. „iSOUP-SymRF: Symbolic Feature Ranking with Random Forests in Online Multi-target Regression“. In Discovery Science, 48–63. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45275-8_4.
Der volle Inhalt der QuelleDuda, Piotr, Maciej Jaworski und Leszek Rutkowski. „Online GRNN-Based Ensembles for Regression on Evolving Data Streams“. In Advances in Neural Networks – ISNN 2018, 221–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92537-0_26.
Der volle Inhalt der QuelleNazeer, Ishrat, Mamoon Rashid, Sachin Kumar Gupta und Abhishek Kumar. „Use of Novel Ensemble Machine Learning Approach for Social Media Sentiment Analysis“. In Advances in Social Networking and Online Communities, 16–28. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4718-2.ch002.
Der volle Inhalt der QuelleRajkumar S., Mary Nikitha K., Ramanathan L., Rajasekar Ramalingam und Mudit Jantwal. „Cloud Hosted Ensemble Learning-Based Rental Apartment Price Prediction Model Using Stacking Technique“. In Deep Learning Research Applications for Natural Language Processing, 229–38. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-6001-6.ch015.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Online ensemble regression"
Kuzin, Danil, Le Yang, Olga Isupova und Lyudmila Mihaylova. „Ensemble Kalman Filtering for Online Gaussian Process Regression and Learning“. In 2018 International Conference on Information Fusion (FUSION). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455785.
Der volle Inhalt der QuelleXu, Jianpeng, Pang-Ning Tan und Lifeng Luo. „ORION: Online Regularized Multi-task Regression and Its Application to Ensemble Forecasting“. In 2014 IEEE International Conference on Data Mining (ICDM). IEEE, 2014. http://dx.doi.org/10.1109/icdm.2014.90.
Der volle Inhalt der QuelleL. Grim, Luis Fernando, und Andre Leon S. Gradvohl. „High-Performance Ensembles of Online Sequential Extreme Learning Machine for Regression and Time Series Forecasting“. In 2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). IEEE, 2018. http://dx.doi.org/10.1109/cahpc.2018.8645863.
Der volle Inhalt der Quelle