Zeitschriftenartikel zum Thema „OMOP common data model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "OMOP common data model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Kang, Mengjia, Jose A. Alvarado-Guzman, Luke V. Rasmussen und Justin B. Starren. „Evolution of a Graph Model for the OMOP Common Data Model“. Applied Clinical Informatics 15, Nr. 05 (Oktober 2024): 1056–65. https://doi.org/10.1055/s-0044-1791487.
Der volle Inhalt der QuelleMaier, Christian, Lorenz A. Kapsner, Sebastian Mate, Hans-Ulrich Prokosch und Stefan Kraus. „Patient Cohort Identification on Time Series Data Using the OMOP Common Data Model“. Applied Clinical Informatics 12, Nr. 01 (Januar 2021): 057–64. http://dx.doi.org/10.1055/s-0040-1721481.
Der volle Inhalt der QuelleChechulina, Anna, Jasmin Carus, Philipp Breitfeld, Christopher Gundler, Hanna Hees, Raphael Twerenbold, Stefan Blankenberg, Frank Ückert und Sylvia Nürnberg. „Semi-Automated Mapping of German Study Data Concepts to an English Common Data Model“. Applied Sciences 13, Nr. 14 (13.07.2023): 8159. http://dx.doi.org/10.3390/app13148159.
Der volle Inhalt der QuelleGarneau, William, Benjamin Martin, Kelly Gebo, Paul Nagy, Johns Hopkins, Danielle Boyce, Michael Cook und Matthew Robinson. „76 Lessons learned during implementation of OMOP common data model across multiple health systems“. Journal of Clinical and Translational Science 8, s1 (April 2024): 20. http://dx.doi.org/10.1017/cts.2024.77.
Der volle Inhalt der QuelleLamer, Antoine, Osama Abou-Arab, Alexandre Bourgeois, Adrien Parrot, Benjamin Popoff, Jean-Baptiste Beuscart, Benoît Tavernier und Mouhamed Djahoum Moussa. „Transforming Anesthesia Data Into the Observational Medical Outcomes Partnership Common Data Model: Development and Usability Study“. Journal of Medical Internet Research 23, Nr. 10 (29.10.2021): e29259. http://dx.doi.org/10.2196/29259.
Der volle Inhalt der QuelleWard, Roger, Christine Mary Hallinan, David Ormiston-Smith, Christine Chidgey und Dougie Boyle. „The OMOP common data model in Australian primary care data: Building a quality research ready harmonised dataset“. PLOS ONE 19, Nr. 4 (18.04.2024): e0301557. http://dx.doi.org/10.1371/journal.pone.0301557.
Der volle Inhalt der QuelleLamer, Antoine, Nicolas Depas, Matthieu Doutreligne, Adrien Parrot, David Verloop, Marguerite-Marie Defebvre, Grégoire Ficheur, Emmanuel Chazard und Jean-Baptiste Beuscart. „Transforming French Electronic Health Records into the Observational Medical Outcome Partnership's Common Data Model: A Feasibility Study“. Applied Clinical Informatics 11, Nr. 01 (Januar 2020): 013–22. http://dx.doi.org/10.1055/s-0039-3402754.
Der volle Inhalt der QuelleLee, Geun Hyeong, Jonggul Park, Jihyeong Kim, Yeesuk Kim, Byungjin Choi, Rae Woong Park, Sang Youl Rhee und Soo-Yong Shin. „Feasibility Study of Federated Learning on the Distributed Research Network of OMOP Common Data Model“. Healthcare Informatics Research 29, Nr. 2 (30.04.2023): 168–73. http://dx.doi.org/10.4258/hir.2023.29.2.168.
Der volle Inhalt der QuelleHallinan, Christine Mary, Roger Ward, Graeme K. Hart, Clair Sullivan, Nicole Pratt, Ashley P. Ng, Daniel Capurro et al. „Seamless EMR data access: Integrated governance, digital health and the OMOP-CDM“. BMJ Health & Care Informatics 31, Nr. 1 (Februar 2024): e100953. http://dx.doi.org/10.1136/bmjhci-2023-100953.
Der volle Inhalt der QuelleBardenheuer, Kristina, Alun Passey, Maria d'Errico, Barbara Millier, Carine Guinard-Azadian, Johan Aschan und Michel van Speybroeck. „Honeur (Heamatology Outcomes Network in Europe): A Federated Model to Support Real World Data Research in Hematology“. Blood 132, Supplement 1 (29.11.2018): 4839. http://dx.doi.org/10.1182/blood-2018-99-111093.
Der volle Inhalt der QuelleParis, Nicolas, Antoine Lamer und Adrien Parrot. „Transformation and Evaluation of the MIMIC Database in the OMOP Common Data Model: Development and Usability Study“. JMIR Medical Informatics 9, Nr. 12 (14.12.2021): e30970. http://dx.doi.org/10.2196/30970.
Der volle Inhalt der QuelleParis, Nicolas, Antoine Lamer und Adrien Parrot. „Transformation and Evaluation of the MIMIC Database in the OMOP Common Data Model: Development and Usability Study“. JMIR Medical Informatics 9, Nr. 12 (14.12.2021): e30970. http://dx.doi.org/10.2196/30970.
Der volle Inhalt der QuelleKent, Seamus, und Jacoline Bouvy. „PP385 Using Common Data Models And Data Networks For Evidence Generation In Health Technology Assessment“. International Journal of Technology Assessment in Health Care 36, S1 (Dezember 2020): 32. http://dx.doi.org/10.1017/s0266462320001683.
Der volle Inhalt der QuelleYoo, Sooyoung, Eunsil Yoon, Dachung Boo, Borham Kim, Seok Kim, Jin Chul Paeng, Ie Ryung Yoo et al. „Transforming Thyroid Cancer Diagnosis and Staging Information from Unstructured Reports to the Observational Medical Outcome Partnership Common Data Model“. Applied Clinical Informatics 13, Nr. 03 (Mai 2022): 521–31. http://dx.doi.org/10.1055/s-0042-1748144.
Der volle Inhalt der QuelleSibert, Nora Tabea, Johannes Soff, Sebastiano La Ferla, Maria Quaranta, Andreas Kremer und Christoph Kowalski. „Transforming a Large-Scale Prostate Cancer Outcomes Dataset to the OMOP Common Data Model—Experiences from a Scientific Data Holder’s Perspective“. Cancers 16, Nr. 11 (30.05.2024): 2069. http://dx.doi.org/10.3390/cancers16112069.
Der volle Inhalt der QuelleCarus, Jasmin, Leona Trübe, Philip Szczepanski, Sylvia Nürnberg, Hanna Hees, Stefan Bartels, Alice Nennecke, Frank Ückert und Christopher Gundler. „Mapping the Oncological Basis Dataset to the Standardized Vocabularies of a Common Data Model: A Feasibility Study“. Cancers 15, Nr. 16 (11.08.2023): 4059. http://dx.doi.org/10.3390/cancers15164059.
Der volle Inhalt der QuelleTan, Hui Xing, Desmond Chun Hwee Teo, Dongyun Lee, Chungsoo Kim, Jing Wei Neo, Cynthia Sung, Haroun Chahed et al. „Applying the OMOP Common Data Model to Facilitate Benefit-Risk Assessments of Medicinal Products Using Real-World Data from Singapore and South Korea“. Healthcare Informatics Research 28, Nr. 2 (30.04.2022): 112–22. http://dx.doi.org/10.4258/hir.2022.28.2.112.
Der volle Inhalt der QuelleJung, Hyesil, Sooyoung Yoo, Seok Kim, Eunjeong Heo, Borham Kim, Ho-Young Lee und Hee Hwang. „Patient-Level Fall Risk Prediction Using the Observational Medical Outcomes Partnership’s Common Data Model: Pilot Feasibility Study“. JMIR Medical Informatics 10, Nr. 3 (11.03.2022): e35104. http://dx.doi.org/10.2196/35104.
Der volle Inhalt der QuelleFinster, Melissa, Maxim Moinat und Elham Taghizadeh. „ETL: From the German Health Data Lab data formats to the OMOP Common Data Model“. PLOS ONE 20, Nr. 1 (06.01.2025): e0311511. https://doi.org/10.1371/journal.pone.0311511.
Der volle Inhalt der QuelleResnic, F. S., S. L. Robbins, J. Denton, L. Nookala, D. Meeker, L. Ohno-Machado, M. E. Matheny und F. FitzHenry. „Creating a Common Data Model for Comparative Effectiveness with the Observational Medical Outcomes Partnership“. Applied Clinical Informatics 06, Nr. 03 (2015): 536–47. http://dx.doi.org/10.4338/aci-2014-12-cr-0121.
Der volle Inhalt der QuelleAhmadi, Najia, Yuan Peng, Markus Wolfien, Michéle Zoch und Martin Sedlmayr. „OMOP CDM Can Facilitate Data-Driven Studies for Cancer Prediction: A Systematic Review“. International Journal of Molecular Sciences 23, Nr. 19 (05.10.2022): 11834. http://dx.doi.org/10.3390/ijms231911834.
Der volle Inhalt der QuelleQuiroz, Juan C., Tim Chard, Zhisheng Sa, Angus Ritchie, Louisa Jorm und Blanca Gallego. „Extract, transform, load framework for the conversion of health databases to OMOP“. PLOS ONE 17, Nr. 4 (11.04.2022): e0266911. http://dx.doi.org/10.1371/journal.pone.0266911.
Der volle Inhalt der QuelleSathappan, Selva Muthu Kumaran, Young Seok Jeon, Trung Kien Dang, Su Chi Lim, Yi-Ming Shao, E. Shyong Tai und Mengling Feng. „Transformation of Electronic Health Records and Questionnaire Data to OMOP CDM: A Feasibility Study Using SG_T2DM Dataset“. Applied Clinical Informatics 12, Nr. 04 (August 2021): 757–67. http://dx.doi.org/10.1055/s-0041-1732301.
Der volle Inhalt der QuelleMakadia, Rupa, und Patrick B. Ryan. „Transforming the Premier Perspective® hospital database to the OMOP Common Data Model“. eGEMs (Generating Evidence & Methods to improve patient outcomes) 2, Nr. 1 (11.11.2014): 15. http://dx.doi.org/10.13063/2327-9214.1110.
Der volle Inhalt der QuellePark, Kangah, Minsu Cho, Minseok Song, Sooyoung Yoo, Hyunyoung Baek, Seok Kim und Kidong Kim. „Exploring the potential of OMOP common data model for process mining in healthcare“. PLOS ONE 18, Nr. 1 (03.01.2023): e0279641. http://dx.doi.org/10.1371/journal.pone.0279641.
Der volle Inhalt der QuelleOliveira, J. C. B., G. S. Julian und J. M. Maruyama. „PT7 Data Standardization in Brazil: An OMOP Common Data Model Approach in a DATASUS Cohort“. Value in Health 26, Nr. 12 (Dezember 2023): S539. http://dx.doi.org/10.1016/j.jval.2023.09.2899.
Der volle Inhalt der QuelleMoon, Hee-kyung, Sung-kook Han und Chang-ho An. „LOD Development System for Medical Information Standard“. International Journal of Engineering & Technology 7, Nr. 3.33 (29.08.2018): 225. http://dx.doi.org/10.14419/ijet.v7i3.33.21018.
Der volle Inhalt der QuelleKlann, Jeffrey G., Matthew A. H. Joss, Kevin Embree und Shawn N. Murphy. „Data model harmonization for the All Of Us Research Program: Transforming i2b2 data into the OMOP common data model“. PLOS ONE 14, Nr. 2 (19.02.2019): e0212463. http://dx.doi.org/10.1371/journal.pone.0212463.
Der volle Inhalt der QuelleKearsley-Fleet, L., K. Hyrich, M. Schaefer, D. Huschek, A. Strangfeld, J. Zavada, M. Lagová et al. „OP0105 FEASIBILITY AND USEFULNESS OF MAPPING BIOLOGIC REGISTRIES TO A COMMON DATA MODEL: ILLUSTRATION USING COMORBIDITIES“. Annals of the Rheumatic Diseases 80, Suppl 1 (19.05.2021): 58.2–59. http://dx.doi.org/10.1136/annrheumdis-2021-eular.888.
Der volle Inhalt der QuelleGlicksberg, Benjamin S., Boris Oskotsky, Nicholas Giangreco, Phyllis M. Thangaraj, Vivek Rudrapatna, Debajyoti Datta, Remi Frazier et al. „ROMOP: a light-weight R package for interfacing with OMOP-formatted electronic health record data“. JAMIA Open 2, Nr. 1 (04.01.2019): 10–14. http://dx.doi.org/10.1093/jamiaopen/ooy059.
Der volle Inhalt der QuelleCarus, Jasmin, Sylvia Nürnberg, Frank Ückert, Catarina Schlüter und Stefan Bartels. „Mapping Cancer Registry Data to the Episode Domain of the Observational Medical Outcomes Partnership Model (OMOP)“. Applied Sciences 12, Nr. 8 (15.04.2022): 4010. http://dx.doi.org/10.3390/app12084010.
Der volle Inhalt der QuelleSun, Yingcheng, Alex Butler, Latoya A. Stewart, Hao Liu, Chi Yuan, Christopher T. Southard, Jae Hyun Kim und Chunhua Weng. „Building an OMOP common data model-compliant annotated corpus for COVID-19 clinical trials“. Journal of Biomedical Informatics 118 (Juni 2021): 103790. http://dx.doi.org/10.1016/j.jbi.2021.103790.
Der volle Inhalt der QuelleBelenkaya, Rimma, Michael J. Gurley, Asieh Golozar, Dmitry Dymshyts, Robert T. Miller, Andrew E. Williams, Shilpa Ratwani et al. „Extending the OMOP Common Data Model and Standardized Vocabularies to Support Observational Cancer Research“. JCO Clinical Cancer Informatics, Nr. 5 (Januar 2021): 12–20. http://dx.doi.org/10.1200/cci.20.00079.
Der volle Inhalt der QuelleMayer, Craig S., und Vojtech Huser. „Learning important common data elements from shared study data: The All of Us program analysis“. PLOS ONE 18, Nr. 7 (07.07.2023): e0283601. http://dx.doi.org/10.1371/journal.pone.0283601.
Der volle Inhalt der QuelleVoss, Erica A., Rupa Makadia, Amy Matcho, Qianli Ma, Chris Knoll, Martijn Schuemie, Frank J. DeFalco, Ajit Londhe, Vivienne Zhu und Patrick B. Ryan. „Feasibility and utility of applications of the common data model to multiple, disparate observational health databases“. Journal of the American Medical Informatics Association 22, Nr. 3 (10.02.2015): 553–64. http://dx.doi.org/10.1093/jamia/ocu023.
Der volle Inhalt der QuelleWarner, Jeremy L., Dmitry Dymshyts, Christian G. Reich, Michael J. Gurley, Harry Hochheiser, Zachary H. Moldwin, Rimma Belenkaya, Andrew E. Williams und Peter C. Yang. „HemOnc: A new standard vocabulary for chemotherapy regimen representation in the OMOP common data model“. Journal of Biomedical Informatics 96 (August 2019): 103239. http://dx.doi.org/10.1016/j.jbi.2019.103239.
Der volle Inhalt der QuelleChakrabarti, Shreya, Anando Sen, Vojtech Huser, Gregory W. Hruby, Alexander Rusanov, David J. Albers und Chunhua Weng. „An Interoperable Similarity-based Cohort Identification Method Using the OMOP Common Data Model Version 5.0“. Journal of Healthcare Informatics Research 1, Nr. 1 (Juni 2017): 1–18. http://dx.doi.org/10.1007/s41666-017-0005-6.
Der volle Inhalt der QuelleMatcho, Amy, Patrick Ryan, Daniel Fife und Christian Reich. „Fidelity Assessment of a Clinical Practice Research Datalink Conversion to the OMOP Common Data Model“. Drug Safety 37, Nr. 11 (04.09.2014): 945–59. http://dx.doi.org/10.1007/s40264-014-0214-3.
Der volle Inhalt der QuelleCho, Sylvia, Margaret Sin, Demetra Tsapepas, Leigh-Anne Dale, Syed A. Husain, Sumit Mohan und Karthik Natarajan. „Content Coverage Evaluation of the OMOP Vocabulary on the Transplant Domain Focusing on Concepts Relevant for Kidney Transplant Outcomes Analysis“. Applied Clinical Informatics 11, Nr. 04 (August 2020): 650–58. http://dx.doi.org/10.1055/s-0040-1716528.
Der volle Inhalt der QuelleRyu, Borim, Eunsil Yoon, Seok Kim, Sejoon Lee, Hyunyoung Baek, Soyoung Yi, Hee Young Na et al. „Transformation of Pathology Reports Into the Common Data Model With Oncology Module: Use Case for Colon Cancer“. Journal of Medical Internet Research 22, Nr. 12 (09.12.2020): e18526. http://dx.doi.org/10.2196/18526.
Der volle Inhalt der QuelleKim, Ki-Hoon, Wona Choi, Soo-Jeong Ko, Dong-Jin Chang, Yeon-Woog Chung, Se-Hyun Chang, Jae-Kwon Kim, Dai-Jin Kim und In-Young Choi. „Multi-Center Healthcare Data Quality Measurement Model and Assessment Using OMOP CDM“. Applied Sciences 11, Nr. 19 (02.10.2021): 9188. http://dx.doi.org/10.3390/app11199188.
Der volle Inhalt der QuelleLynch, Kristine E., Stephen A. Deppen, Scott L. DuVall, Benjamin Viernes, Aize Cao, Daniel Park, Elizabeth Hanchrow, Kushan Hewa, Peter Greaves und Michael E. Matheny. „Incrementally Transforming Electronic Medical Records into the Observational Medical Outcomes Partnership Common Data Model: A Multidimensional Quality Assurance Approach“. Applied Clinical Informatics 10, Nr. 05 (Oktober 2019): 794–803. http://dx.doi.org/10.1055/s-0039-1697598.
Der volle Inhalt der QuelleNguyen, Phung-Anh, Min-Huei Hsu, Tzu-Hao Chang, Hsuan-Chia Yang, Chih-Wei Huang, Chia-Te Liao, Christine Y. Lu und Jason C. Hsu. „Taipei Medical University Clinical Research Database: a collaborative hospital EHR database aligned with international common data standards“. BMJ Health & Care Informatics 31, Nr. 1 (Mai 2024): e100890. http://dx.doi.org/10.1136/bmjhci-2023-100890.
Der volle Inhalt der QuelleRachidi, Salma, Alexey Ryzhenkov, Valtteri Nieminen, Tomi P. Mäkelä, Oscar Brück, Kimmo Porkka und Eric Fey. „Deep Learning Models for Predicting Overall Survival of Acute Myeloid Leukemia Using Short-Term Longitudinal Blood Measurements and the Omop Common Data Model“. Blood 144, Supplement 1 (05.11.2024): 1476. https://doi.org/10.1182/blood-2024-209871.
Der volle Inhalt der QuelleKang, Byungkon, Jisang Yoon, Ha Young Kim, Sung Jin Jo, Yourim Lee und Hye Jin Kam. „Deep-learning-based automated terminology mapping in OMOP-CDM“. Journal of the American Medical Informatics Association 28, Nr. 7 (13.05.2021): 1489–96. http://dx.doi.org/10.1093/jamia/ocab030.
Der volle Inhalt der QuelleMaier, C., L. Lang, H. Storf, P. Vormstein, R. Bieber, J. Bernarding, T. Herrmann et al. „Towards Implementation of OMOP in a German University Hospital Consortium“. Applied Clinical Informatics 09, Nr. 01 (Januar 2018): 054–61. http://dx.doi.org/10.1055/s-0037-1617452.
Der volle Inhalt der QuelleZhou, Xiaofeng, Sundaresan Murugesan, Harshvinder Bhullar, Qing Liu, Bing Cai, Chuck Wentworth und Andrew Bate. „An Evaluation of the THIN Database in the OMOP Common Data Model for Active Drug Safety Surveillance“. Drug Safety 36, Nr. 2 (04.01.2013): 119–34. http://dx.doi.org/10.1007/s40264-012-0009-3.
Der volle Inhalt der QuelleBae, Woo Kyung, Jihoon Cho, Seok Kim, Borham Kim, Hyunyoung Baek, Wongeun Song und Sooyoung Yoo. „Coronary Artery Computed Tomography Angiography for Preventing Cardio-Cerebrovascular Disease: Observational Cohort Study Using the Observational Health Data Sciences and Informatics’ Common Data Model“. JMIR Medical Informatics 10, Nr. 10 (13.10.2022): e41503. http://dx.doi.org/10.2196/41503.
Der volle Inhalt der QuelleLenert, Leslie A., Andrey V. Ilatovskiy, James Agnew, Patricia Rudisill, Jeff Jacobs, Duncan Weatherston und Kenneth R. Deans Jr. „Automated production of research data marts from a canonical fast healthcare interoperability resource data repository: applications to COVID-19 research“. Journal of the American Medical Informatics Association 28, Nr. 8 (12.06.2021): 1605–11. http://dx.doi.org/10.1093/jamia/ocab108.
Der volle Inhalt der QuelleLee, Kyung Ae, Heung Yong Jin, Seung Han Jeong, Jang Hyeon Kim, Yuji Kim und Tae Sun Park. „Trends in Medication Utilization and Glycemic Control Among Type 2 Diabetes Using a Common Data Model Based on Electronic Health Records From 2000 to 2019“. Journal of the Endocrine Society 5, Supplement_1 (01.05.2021): A481. http://dx.doi.org/10.1210/jendso/bvab048.983.
Der volle Inhalt der Quelle