Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Omnidirectional circular polarization (OCP)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Omnidirectional circular polarization (OCP)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Omnidirectional circular polarization (OCP)"
Yufeng Yu, Zhongxiang Shen und Sailing He. „Compact Omnidirectional Antenna of Circular Polarization“. IEEE Antennas and Wireless Propagation Letters 11 (2012): 1466–69. http://dx.doi.org/10.1109/lawp.2012.2231392.
Der volle Inhalt der QuelleWei, Kun, Jian-Ying Li, Ling Wang und Zijian Xing. „A NEW OMNIDIRECTIONAL CIRCULAR POLARIZATION MICROSTIP ANTENNA“. Progress In Electromagnetics Research Letters 53 (2015): 45–50. http://dx.doi.org/10.2528/pierl15030902.
Der volle Inhalt der QuelleWu, Junyan, Jiaao Yu und Qin Tao. „Design of a Missile-borne Conformal Microstrip Navigation Antenna“. MATEC Web of Conferences 232 (2018): 04080. http://dx.doi.org/10.1051/matecconf/201823204080.
Der volle Inhalt der QuelleZhang, Ke, Xiangjun Li, Lei Chen, Zengjun Liu und Yuchen Xie. „Impact Analysis of Orthogonal Circular-Polarized Interference on GNSS Spatial Anti-Jamming Array“. Remote Sensing 16, Nr. 23 (01.12.2024): 4506. https://doi.org/10.3390/rs16234506.
Der volle Inhalt der QuelleSu, Changjiang, Yanqun Liu, Leilei Liu, Mei Yang, Hongxin Zhao und Xiaoxing Yin. „Experimental Evaluation of Multipath Mitigation in TDOA-Based Indoor Passive Localization System Using A Beam Steering Broadband Circular Polarization Antenna“. Electronics 7, Nr. 12 (01.12.2018): 362. http://dx.doi.org/10.3390/electronics7120362.
Der volle Inhalt der QuelleMulimbayan, Francis, und Manolo G. Mena. „Comparative Study of the Corrosion Behavior of Low-Nickel AISI 202 and Conventional AISI 304 Stainless Steels in Citric Acid Using Electrochemical Techniques“. Applied Mechanics and Materials 835 (Mai 2016): 131–35. http://dx.doi.org/10.4028/www.scientific.net/amm.835.131.
Der volle Inhalt der QuelleWei, Qian, Jiaju Wu, Zhiwei Guo, Xiaotian Xu, Ke Xu, Yong Sun, Yunhui Li, Haitao Jiang und Hong Chen. „Photonic Bandgaps of One-Dimensional Photonic Crystals Containing Anisotropic Chiral Metamaterials“. Photonics 9, Nr. 6 (10.06.2022): 411. http://dx.doi.org/10.3390/photonics9060411.
Der volle Inhalt der QuelleZhou, Yun, Shaojun Fang, Hongmei Liu, Zhongbao Wang und Te Shao. „A Function Reconfigurable Antenna Based on Liquid Metal“. Electronics 9, Nr. 5 (24.05.2020): 873. http://dx.doi.org/10.3390/electronics9050873.
Der volle Inhalt der QuelleKeshari, Jaishanker Prasad, Binod Kumar Kanaujia, Mukesh Kumar Khandelwal, Pritam Singh Bakariya und Ram Mohan Mehra. „Omnidirectional multi-band stacked microstrip patch antenna with wide impedance bandwidth and suppressed cross-polarization“. International Journal of Microwave and Wireless Technologies 9, Nr. 3 (24.02.2016): 629–38. http://dx.doi.org/10.1017/s1759078716000209.
Der volle Inhalt der QuelleLi, Weiwei, Kwok Wa Leung und Nan Yang. „Omnidirectional Dielectric Resonator Antenna With a Planar Feed for Circular Polarization Diversity Design“. IEEE Transactions on Antennas and Propagation 66, Nr. 3 (März 2018): 1189–97. http://dx.doi.org/10.1109/tap.2018.2794323.
Der volle Inhalt der QuelleDissertationen zum Thema "Omnidirectional circular polarization (OCP)"
Positano, Francesco. „Antennes reconfigurables pour réseaux IoT modernes : principes de conception et stratégies de mise en œuvre“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4062.
Der volle Inhalt der QuelleThe rapid growth of Internet of Things (IoT) applications has led to a surge in demand for advanced wireless technologies.In the context of an ever-evolving digital landscape, reconfigurable antennas have emerged as a pivotal focus due to their adaptive nature.This work provides a comprehensive overview of the current landscape of IoT and wireless technologies, with a focus on the IoT-compliant standards and how they have influenced antenna design. This research explores the challenges of designing, optimizing, and implementing these antennas specifically for modern IoT networks. The fundamental principles of miniature Electrically Small Antennas (ESA)s and reconfigurable antennas designs for IoT applications builds the foundation of this work.Firstly, the exploration of a miniature Omnidirectional Circular Polarization (OCP) antenna, and an in-depth analysis of its optimization parameters and circular polarization is carried out. A study on reconfigurable OCP antenna is also provided, with a stress on practical implementation strategies. Further, the research explores pattern reconfigurability, a feature that allows the antenna to dynamically alter its radiation pattern. A low-profile Pattern Reconfigurable Electronically Steerable Parasitic Array Radiator (ESPAR) is designed and optimized, with measured results presented and analyzed. The research also proposes potential solutions to the re-optimization problem associated with the practical implementation of switching circuits. The study also includes real-life field-testing. The design and on-field testing of an ESPAR antenna for Unmanned Aerial Vehicle (UAV) based long-range IoT applications are thus discussed, covering the integration of the transceiver. Finally, this work discusses the design of a frequency reconfigurable antenna for satellite-based IoT communications, with the challenges of miniaturization and reconfigurability at the forefront
Zhu, Shaozhen (Sharon), Tahereh S. Ghazaany, Raed A. Abd-Alhameed, Steven M. R. Jones, James M. Noras, T. Suggett, Buren T. Van und S. Marker. „Improved bandwidth low-profile miniaturized multi-arm logarithmic spiral antenna“. 2014. http://hdl.handle.net/10454/10834.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Omnidirectional circular polarization (OCP)"
Iqbal, Sana, Muhammad Amin und Jawad Yousaf. „Designing omnidirectional bifilar Helix Antenna for circular polarization“. In 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL). IEEE, 2012. http://dx.doi.org/10.1109/estel.2012.6400100.
Der volle Inhalt der QuelleKaivanto, E., E. Salonen und M. Berg. „Artificially anisotropic cylinder to convert omnidirectional linear polarization into circular polarization“. In Loughborough Antennas & Propagation Conference (LAPC 2017). Institution of Engineering and Technology, 2017. http://dx.doi.org/10.1049/cp.2017.0295.
Der volle Inhalt der QuelleLiu, Xiyao, Kwok Wa Leung, Yanting Liu und Nan Yang. „Mirror-Integrated Dielectric Resonator Antenna with Omnidirectional Circular Polarization“. In 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). IEEE, 2019. http://dx.doi.org/10.1109/csqrwc.2019.8799296.
Der volle Inhalt der QuelleGolovin, V. V., und Y. N. Tyschuk. „Omnidirectional antenna with a radiation field of circular polarization“. In 2012 6th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS 2012). IEEE, 2012. http://dx.doi.org/10.1109/uwbusis.2012.6379770.
Der volle Inhalt der QuelleVarum, Tiago, Joao N. Matos, Pedro Pinho und Arnaldo Oliveira. „Printed antenna for DSRC systems with omnidirectional circular polarization“. In 2012 15th International IEEE Conference on Intelligent Transportation Systems - (ITSC 2012). IEEE, 2012. http://dx.doi.org/10.1109/itsc.2012.6338677.
Der volle Inhalt der QuelleGolovkov, Alexander, Alexander Zhuravlev und Polina Terenteva. „Omnidirectional in the Azimuth Plane Antennas Based on Circular Arrays with Horizontal Polarization for Radio Monitoring Systems“. In 2020 9th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2020. http://dx.doi.org/10.1109/meco49872.2020.9134165.
Der volle Inhalt der QuelleKamal, Shahanawaz, Ubaid Ullah und Slawomir Koziel. „A Printed Crossed-Dipole mmWave Antenna with Efficient Omnidirectional Circular Polarization for Wireless Surveillance in IOT Applications“. In 2022 9th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). IEEE, 2022. http://dx.doi.org/10.1109/iotsms58070.2022.10061943.
Der volle Inhalt der Quelle