Zeitschriftenartikel zum Thema „Omega-3 fatty acids“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Omega-3 fatty acids.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Omega-3 fatty acids" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Feliu, María, Anabel Impa Condori, Inés Fernandez und Nora Slobodianik. „Omega 3 Fatty Acids vs Omega 6 Fatty Acids“. Current Developments in Nutrition 6, Supplement_1 (Juni 2022): 512. http://dx.doi.org/10.1093/cdn/nzac077.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Objectives Dietary lipids have a very important role in nutrition and must be ingested in an appropriate proportion. Objective: To study the effect of w3 fatty acid supplementation of a diet containing sunflower oil (rich in fatty acids omega 6) as fat source, on serum fatty acid profiles of growing rats. Methods Weanling Wistar rats received during 10 days normocaloric diet and fat was provided by sunflower oil (S group). The others groups received the same diet supplemented with 24mg/day of fish oil (SF group) or chía oil (SCh group). Control group (C) received AIN´93 diet. Serum fatty acids profiles were determined by gas chromatography. Statistical analysis used ANOVA test. Results Results: (expressed as %Area) SERUM: OLEIC C:10.11 ± 1.84, S:12.13 ± 3.84, SCh:12.74 ± 1.56, SF: 13.12 ± 2.82; ARACHIDONIC C:13.40 ± 4.39, S:17.61 ± 4.09, SCh: 15.75 ± 0.89, SF:15.41 ± 1.76; LINOLEIC C:20.52 ± 3.37, S: 19.80 ± 3.36, SCh: 21.14 ± 2.12, SF: 18.92 ± 3.87; LINOLENIC (ALA) C:0.93 ± 0.27a, S:0.19 ± 0.06 b, SCh: 0.28 ± 0.08b, SF:0.22 ± 0.05b; EPA C:0.80 ± 0.22, S:0.68 ± 0.15, SCh: 0.74 ± 0.18, SF: 0.67 ± 0.14; DHA C:1.60 ± 0.55a, S:1.14 ± 0.35a, SCh:1.70 ± 0.45a, SF:4.22 ± 0.93b. Media that didn't present a letter (a, b) in common, were different (p < 0.01). In sera, S, SF and SCh groups showed lower ALA levels compared to C. SF group presented high levels of DHA. Diet S was mainly a contributor to linoleic acid with a ratio w6/w3 = 250 (recommended value: 5–10). Conclusions The diet containing sunflower oil as fat source shows that ω6 family route was exacerbated; by the other hand ω3 family was depressed. Chia supplement showed a tendency towards higher values of w3 family but were significantly lower than C. Fish oil supplement increase significantly DHA values. Diet containing sunflower oil as fat source provoked changes in serum fatty acids profiles and the supplementation with w3 fatty acid provided by chía or fish oil do not increase ALA values significantly. Diet influences the serum fatty acid profile, being not only important the percentage of lipids on it but also the different fatty acids pattern. Funding Sources UBACyT: 20020190100093BA.
2

Schmidt, Erik Berg, und Jørn Dyerberg. „Omega-3 Fatty Acids“. Drugs 47, Nr. 3 (März 1994): 405–24. http://dx.doi.org/10.2165/00003495-199447030-00003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

&NA;. „Omega-3-fatty-acids“. Reactions Weekly &NA;, Nr. 1250 (Mai 2009): 31. http://dx.doi.org/10.2165/00128415-200912500-00092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Radack, Kenneth L. „Omega-3 Fatty Acids“. Annals of Internal Medicine 109, Nr. 1 (01.07.1988): 81. http://dx.doi.org/10.7326/0003-4819-109-1-81.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Brookhyser, Joan. „Omega 3 Fatty Acids“. Journal of Renal Nutrition 16, Nr. 3 (Juli 2006): e7-e10. http://dx.doi.org/10.1053/j.jrn.2006.04.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Davidson, Michael H. „Omega-3 fatty acids“. Current Opinion in Lipidology 24, Nr. 6 (Dezember 2013): 467–74. http://dx.doi.org/10.1097/mol.0000000000000019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Freeman, Marlene P. „Omega-3 fatty acids“. Evidence-Based Integrative Medicine 1, Nr. 1 (2003): 43–49. http://dx.doi.org/10.2165/01197065-200301010-00008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Engler, Marguerite M., und Mary B. Engler. „Omega-3 Fatty Acids“. Journal of Cardiovascular Nursing 21, Nr. 1 (Januar 2006): 17–24. http://dx.doi.org/10.1097/00005082-200601000-00005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

&NA;. „Omega-3 Fatty Acids“. Journal of Cardiovascular Nursing 21, Nr. 1 (Januar 2006): 25–26. http://dx.doi.org/10.1097/00005082-200601000-00006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Braquet, P. „Omega-3 fatty acids“. Biochimie 75, Nr. 11 (Januar 1993): 1020–21. http://dx.doi.org/10.1016/0300-9084(93)90158-o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Ross, Stephanie Maxine. „Omega-3 Fatty Acids“. Holistic Nursing Practice 30, Nr. 6 (2016): 382–85. http://dx.doi.org/10.1097/hnp.0000000000000182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Vors, C. é. cile, Patrick Couture und Benoît Lamarche. „Omega-3 fatty acids“. Current Opinion in Lipidology 31, Nr. 1 (Februar 2020): 38–39. http://dx.doi.org/10.1097/mol.0000000000000660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Chang, Chuchun L., und Richard J. Deckelbaum. „Omega-3 fatty acids“. Current Opinion in Lipidology 24, Nr. 4 (August 2013): 345–50. http://dx.doi.org/10.1097/mol.0b013e3283616364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Schoenfeld, Brad. „Omega-3 Fatty Acids“. Strength and Conditioning Journal 26, Nr. 3 (Juni 2004): 72–76. http://dx.doi.org/10.1519/00126548-200406000-00021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Boutros, Cherif. „Omega-3 Fatty Acids“. Archives of Surgery 145, Nr. 6 (01.06.2010): 515. http://dx.doi.org/10.1001/archsurg.2010.91.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ross, Stephanie Maxine. „Omega-3 Polyunsaturated Fatty Acids“. Holistic Nursing Practice 29, Nr. 4 (2015): 245–47. http://dx.doi.org/10.1097/hnp.0000000000000100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Pepping, Joseph. „Omega-3 essential fatty acids“. American Journal of Health-System Pharmacy 56, Nr. 8 (15.04.1999): 719–20. http://dx.doi.org/10.1093/ajhp/56.8.719.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hull, Mark A. „Omega-3 polyunsaturated fatty acids“. Best Practice & Research Clinical Gastroenterology 25, Nr. 4-5 (August 2011): 547–54. http://dx.doi.org/10.1016/j.bpg.2011.08.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Ruprich, Jiří, Svatava Bischofová, Helena Pernicová, Zuzana Měřínská, Klára Horáková, Štěpánka Dvořáková, Dagmar Ostrovská, Martina Kalivodová und Irena Řehůřková. „Omega-3 mastné kyseliny v lidské krvi – omega-3 index“. Acta hygienica, epidemiologica et microbiologica, Nr. 2 (30.06.2021): 1–111. http://dx.doi.org/10.21101/ahem.a1008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Haag, Marianne. „Essential Fatty Acids and the Brain“. Canadian Journal of Psychiatry 48, Nr. 3 (April 2003): 195–203. http://dx.doi.org/10.1177/070674370304800308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Objective: To review the role of essential fatty acids in brain membrane function and in the genesis of psychiatric disease. Method: Medline databases were searched for published articles with links among the following key words: essential fatty acids, omega-3 fatty acids, docosahexanoic acid, eicosapentanoic acid, arachidonic acid, neurotransmission, phospholipase A2, depression, schizophrenia, mental performance, attention-deficit hyperactivity disorder, and Alzheimer's disease. Biochemistry textbooks were consulted on the role of fatty acids in membrane function, neurotransmission, and eicosanoid formation. The 3-dimensional structures of fatty acids were obtained from the Web site of the Biochemistry Department, University of Arizona (2001). Results: The fatty acid composition of neuronal cell membrane phospholipids reflects their intake in the diet. The degree of a fatty acid's desaturation determines its 3-dimensional structure and, thus, membrane fluidity and function. The ratio between omega-3 and omega-6 polyunsaturated fatty acids (PUFAs), in particular, influences various aspects of serotoninergic and catecholaminergic neurotransmission, as shown by studies in animal models. Phospholipase A2 (PLA2) hydrolyzes fatty acids from membrane phospholipids: liberated omega-6 PUFAs are metabolized to prostaglandins with a higher inflammatory potential, compared with those generated from the omega-3 family. Thus the activity of PLA2 coupled with membrane fatty acid composition may play a central role in the development of neuronal dysfunction. Intervention trials in human subjects show that omega-3 fatty acids have possible positive effects in the treatment of various psychiatric disorders, but more data are needed to make conclusive directives in this regard. Conclusion: The ratio of membrane omega-3 to omega-6 PUFAs can be modulated by dietary intake. This ratio influences neurotransmission and prostaglandin formation, processes that are vital in the maintenance of normal brain function.
21

Sefer, Dragan, Stamen Radulovic, Dejan Peric, Matija Sefer, Lazar Makivic, Svetlana Grdovic und Radmila Markovic. „Domestic chicken omega 3 – a product for promoting human health“. IOP Conference Series: Earth and Environmental Science 854, Nr. 1 (01.10.2021): 012081. http://dx.doi.org/10.1088/1755-1315/854/1/012081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Literature data show that the relationship between two groups of polyunsaturated fatty acids in diet, omega 3 acids, whose basic representative is a-linolenic acid (C18: 3 n-3), and omega 6 acids, whose basic representative is linoleic acid (C18: 2 n-6), has a significant role in development of cardiovascular diseases in humans. The optimal ratio of omega 6 to omega 3 fatty acids is around 4:1. In monogastric animals, the fatty acids in feed are absorbed in the gastrointestinal tract largely unchanged. This means the fatty acid profile of the animal’s diet directly reflects the fatty acid profile of the tissue. The daily intake of unsaturated fatty acids can be increased by an adequate animal nutrition strategy. Flaxseed contains ten times more unsaturated (32.26%) than saturated (3.66%) fatty acids. The largest amount of unsaturated fatty acids (about 70%) is a-linolenic acid (ALA), which is a precursor of the entire omega 3 series of fatty acids, and which makes flaxseed an ideal raw material for the production of a wide range of omega 3 enriched products. In order to obtain chicken meat rich in omega 3, an experiment was organized with a specific diet for broilers at fattening. Thanks to the designed animal feed, it was possible to get products (meat, breast, drumstick, liver, subcutaneous fat) with significantly higher amounts of omega 3 fatty acids compared to the same products obtained from broilers fed with conventional mixtures, or with almost the ideal ratio between omega 6 and omega 3 fatty acids.
22

Aryani, Titin, Fitria Siswi Utami und Sulistyaningsih Sulistyaningsih. „IDENTIFIKASI ASAM LEMAK OMEGA PADA ASI EKSKLUSIF MENGGUNAKAN KROMATOGRAFI GC-MS“. Journal of Health Studies 1, Nr. 1 (28.03.2017): 1–7. http://dx.doi.org/10.31101/jhes.180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract: Quantitative research aims to identify the omega fatty acids in exclusive breast milk (ASI) Exclusive. The data analysis used data chromatogram Gas Chromatography-Mass Spectrometry (GC-MS). The data generated is breast milk (ASI) had higher levels of omega-3 fatty acids amounting to 28.24%, omega-6 and omega of 0.57% 9 at 26.56%. The conclusion from this study is there is the content of omega-3, omega-6, omega-9 fatty acids in breast milk (ASI). Highest levels of omega fatty acids in breast milk is the omega-3 fatty acid that is equal to 28.24%.Keywords: milk, omega fatty acids, GC-MS
23

Calder, Philip C., und Parveen Yaqoob. „Understanding Omega-3 Polyunsaturated Fatty Acids“. Postgraduate Medicine 121, Nr. 6 (01.11.2009): 148–57. http://dx.doi.org/10.3810/pgm.2009.11.2083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Pavlovic, D. M., Aleksandra Pavlovic und Maja Lackovic. „Omega 3 fatty acids in psychiatry“. Archives of Biological Sciences 65, Nr. 1 (2013): 43–46. http://dx.doi.org/10.2298/abs1301043p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Omega-3 long-chain polyunsaturated fatty acids (?-3 LC-PUFAs) are thought to be important for normal dopaminergic, glutamatergic and serotonergic neurotransmission. Depression is less prevalent in societies with high fish consumption, and depressed patients have significantly lower red blood cell ?-3 levels. Studies with ?-3 supplementation have led to controversial results. A significantly longer remission of bipolar symptomatology has been confirmed from a high-dose DHA and EPA mixture. Greater seafood consumption per capita has been connected with a lower prevalence of bipolar spectrum disorders. Reduced levels of ?-6 and ?-3 PUFAs were found in patients with schizophrenia.
25

Wadia, Reena. „Periodontitis and omega-3 fatty acids“. British Dental Journal 232, Nr. 8 (22.04.2022): 533. http://dx.doi.org/10.1038/s41415-022-4212-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Lee, John H., James H. O'Keefe, Carl J. Lavie, Roberto Marchioli und William S. Harris. „Omega-3 Fatty Acids for Cardioprotection“. Mayo Clinic Proceedings 83, Nr. 3 (März 2008): 324–32. http://dx.doi.org/10.4065/83.3.324.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

KNAPP, HOWARD R. „Studies of Omega-3 Fatty Acids“. Annals of Internal Medicine 108, Nr. 5 (01.05.1988): 767. http://dx.doi.org/10.7326/0003-4819-108-5-767_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Simopoulos, Artemis P. „Omega-3 Fatty Acids and Athletics“. Current Sports Medicine Reports 6, Nr. 4 (August 2007): 230–36. http://dx.doi.org/10.1097/01.csmr.0000306476.80090.8b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Laviano, Alessandro, Serena Rianda, Alessio Molfino und Filippo Rossi Fanelli. „Omega-3 fatty acids in cancer“. Current Opinion in Clinical Nutrition and Metabolic Care 16, Nr. 2 (März 2013): 156–61. http://dx.doi.org/10.1097/mco.0b013e32835d2d99.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zolot, Joan. „Omega-3 Fatty Acids and Antioxidants“. AJN, American Journal of Nursing 115, Nr. 12 (Dezember 2015): 68. http://dx.doi.org/10.1097/01.naj.0000475298.35609.ec.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Ross, Stephanie Maxine. „Omega-3 Fatty Acids, Part I“. Holistic Nursing Practice 26, Nr. 6 (2012): 356–59. http://dx.doi.org/10.1097/hnp.0b013e3182705e61.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

ASTORG, PIERRE. „Omega-3 Fatty Acids and Depression“. American Journal of Psychiatry 162, Nr. 2 (Februar 2005): 402—a—402. http://dx.doi.org/10.1176/appi.ajp.162.2.402-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Harris, William S. „Omega-3 Fatty Acids and Health“. American Journal of Clinical Nutrition 62, Nr. 6 (01.12.1995): 1293. http://dx.doi.org/10.1093/ajcn/62.6.1293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Calder, Philip C. „Immunomodulation by omega-3 fatty acids“. Prostaglandins, Leukotrienes and Essential Fatty Acids 77, Nr. 5-6 (November 2007): 327–35. http://dx.doi.org/10.1016/j.plefa.2007.10.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Cole, Greg M., Qiu-Lan Ma und Sally A. Frautschy. „Omega-3 fatty acids and dementia“. Prostaglandins, Leukotrienes and Essential Fatty Acids 81, Nr. 2-3 (August 2009): 213–21. http://dx.doi.org/10.1016/j.plefa.2009.05.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Mazza, Marianna, Massimiliano Pomponi, Luigi Janiri, Pietro Bria und Salvatore Mazza. „Omega-3 fatty acids and epilepsy“. Progress in Neuro-Psychopharmacology and Biological Psychiatry 31, Nr. 4 (Mai 2007): 974. http://dx.doi.org/10.1016/j.pnpbp.2007.02.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Hellwig, Jennifer. „Omega-3 Fatty Acids and Depression“. Nursing for Women's Health 20, Nr. 1 (Februar 2016): 14. http://dx.doi.org/10.1016/s1751-4851(16)00033-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Swingler, D. „Omega-3 fatty acids and mood“. Journal of Affective Disorders 107 (März 2008): S31. http://dx.doi.org/10.1016/j.jad.2007.12.176.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

LEARD-HANSSON, JAN, und Laurence Guttmacher. „Omega-3 Fatty Acids and Depression“. Clinical Psychiatry News 33, Nr. 5 (Mai 2005): 28. http://dx.doi.org/10.1016/s0270-6644(05)70348-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Mischoulon, David, und Marlene P. Freeman. „Omega-3 Fatty Acids in Psychiatry“. Psychiatric Clinics of North America 36, Nr. 1 (März 2013): 15–23. http://dx.doi.org/10.1016/j.psc.2012.12.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Simopoulos, Artemis P. „Omega-3 Fatty Acids and Cancer“. Indoor and Built Environment 12, Nr. 6 (Dezember 2003): 405–12. http://dx.doi.org/10.1177/1420326x03036999.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Oh, Da Young, und Jerrold M. Olefsky. „Omega 3 Fatty Acids and GPR120“. Cell Metabolism 15, Nr. 5 (Mai 2012): 564–65. http://dx.doi.org/10.1016/j.cmet.2012.04.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Goncalves, Carolina G., Eduardo JB Ramos, Susumu Suzuki und Michael M. Meguid. „Omega-3 fatty acids and anorexia“. Current Opinion in Clinical Nutrition and Metabolic Care 8, Nr. 4 (Juli 2005): 403–7. http://dx.doi.org/10.1097/01.mco.0000172580.02138.20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Saldeen, Pia, und Tom Saldeen. „Women and Omega-3 Fatty Acids“. Obstetrical & Gynecological Survey 59, Nr. 10 (Oktober 2004): 722–30. http://dx.doi.org/10.1097/01.ogx.0000140038.70473.96.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Mozurkewich, Ellen L., und Chelsea Klemens. „Omega-3 fatty acids and pregnancy“. Current Opinion in Obstetrics and Gynecology 24, Nr. 2 (März 2012): 72–77. http://dx.doi.org/10.1097/gco.0b013e328350fd34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Mori, Trevor A., und Lawrence J. Beilin. „Omega-3 fatty acids and inflammation“. Current Atherosclerosis Reports 6, Nr. 6 (November 2004): 461–67. http://dx.doi.org/10.1007/s11883-004-0087-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Simopoulos, Artemis P. „Omega-3 fatty acids and athletics“. Current Sports Medicine Reports 6, Nr. 4 (11.07.2007): 230–36. http://dx.doi.org/10.1007/s11932-007-0037-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Logan, A. C. „Omega-3 Fatty Acids and Acne“. Archives of Dermatology 139, Nr. 7 (01.07.2003): 941—a—942. http://dx.doi.org/10.1001/archderm.139.7.941-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Gören, Jessica L., und Ashley T. Tewksbury. „The Use of Omega-3 Fatty Acids in Mental Illness“. Journal of Pharmacy Practice 24, Nr. 5 (22.09.2011): 452–71. http://dx.doi.org/10.1177/0897190011422876.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Purpose: This article will summarize the current evidence on the effects of omega-3 fatty acids on prevention and treatment of mental illness. Background: Omega-3 fatty acids are involved in many physiologic processes. Since they cannot be made de novo in the body, they are considered essential nutrients. As the Western diet evolved, dietary intake of fatty acids has shifted to increased omega-6 fatty acids and decreased omega-3 fatty acids intake. These changes have been correlated with numerous differences in prevalence and course of mental illnesses. Methods: A MEDLINE search from 1966 to December 2010 was completed to identify studies comparing changes in symptoms, functioning, other outcomes, and/or side effects in patients treated with omega-3 fatty acids for mental illness. The studies were reviewed and reported by specific psychiatric disorder studied. Conclusions: Omega-3 fatty acids play a role in many biologic functions. Epidemiologic data implicate omega-3 fatty acid deficiencies in many mental illnesses. Data are most robust for omega-3 fatty acids' role in affective disorders. However, data are conflicting, negative, or absent for most mental illnesses.
50

Chen, Xi, Xue Du, Jianliang Shen, Lizhi Lu und Weiqun Wang. „Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids“. Experimental Biology and Medicine 242, Nr. 1 (04.10.2016): 80–87. http://dx.doi.org/10.1177/1535370216664031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59–81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits.

Zur Bibliographie