Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Olfactory circuit“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Olfactory circuit" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Olfactory circuit"
Shao, Z., A. C. Puche, E. Kiyokage, G. Szabo und M. T. Shipley. „Two GABAergic Intraglomerular Circuits Differentially Regulate Tonic and Phasic Presynaptic Inhibition of Olfactory Nerve Terminals“. Journal of Neurophysiology 101, Nr. 4 (April 2009): 1988–2001. http://dx.doi.org/10.1152/jn.91116.2008.
Der volle Inhalt der QuelleYang, Chi-Jen, Kuo-Ting Tsai, Nan-Fu Liou und Ya-Hui Chou. „Interneuron Diversity: Toward a Better Understanding of Interneuron Development In the Olfactory System“. Journal of Experimental Neuroscience 13 (Januar 2019): 117906951982605. http://dx.doi.org/10.1177/1179069519826056.
Der volle Inhalt der QuelleChapman, Phillip D., Samual P. Bradley, Erica J. Haught, Kassandra E. Riggs, Mouaz M. Haffar, Kevin C. Daly und Andrew M. Dacks. „Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics“. Proceedings of the Royal Society B: Biological Sciences 284, Nr. 1859 (26.07.2017): 20170339. http://dx.doi.org/10.1098/rspb.2017.0339.
Der volle Inhalt der QuelleXie, Qijing, Bing Wu, Jiefu Li, Chuanyun Xu, Hongjie Li, David J. Luginbuhl, Xin Wang, Alex Ward und Liqun Luo. „Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons“. Proceedings of the National Academy of Sciences 116, Nr. 32 (24.07.2019): 16068–73. http://dx.doi.org/10.1073/pnas.1905832116.
Der volle Inhalt der QuelleChen, Chen, Wei Kong, Jun Liang, Jiaming Lu, Dajie Chen, Yi Sun, Xin Zhang et al. „Impaired olfactory neural circuit in patients with SLE at early stages“. Lupus 30, Nr. 7 (15.04.2021): 1078–85. http://dx.doi.org/10.1177/09612033211005556.
Der volle Inhalt der QuellePaoli, Marco, und Giovanni C. Galizia. „Olfactory coding in honeybees“. Cell and Tissue Research 383, Nr. 1 (Januar 2021): 35–58. http://dx.doi.org/10.1007/s00441-020-03385-5.
Der volle Inhalt der QuelleFerrarelli, L. K. „Toll receptors wire the olfactory circuit“. Science Signaling 8, Nr. 367 (10.03.2015): ec53-ec53. http://dx.doi.org/10.1126/scisignal.aab0682.
Der volle Inhalt der QuelleCoya, Ruth, Fernando Martin, Laura Calvin-Cejudo, Carolina Gomez-Diaz und Esther Alcorta. „Validation of an Optogenetic Approach to the Study of Olfactory Behavior in the T-Maze of Drosophila melanogaster Adults“. Insects 13, Nr. 8 (22.07.2022): 662. http://dx.doi.org/10.3390/insects13080662.
Der volle Inhalt der QuelleNewquist, Gunnar, Alexandra Novenschi, Donovan Kohler und Dennis Mathew. „Differential Contributions of Olfactory Receptor Neurons in a Drosophila Olfactory Circuit“. eneuro 3, Nr. 4 (Juli 2016): ENEURO.0045–16.2016. http://dx.doi.org/10.1523/eneuro.0045-16.2016.
Der volle Inhalt der QuelleWu, Bing, Jiefu Li, Ya-Hui Chou, David Luginbuhl und Liqun Luo. „Fibroblast growth factor signaling instructs ensheathing glia wrapping of Drosophila olfactory glomeruli“. Proceedings of the National Academy of Sciences 114, Nr. 29 (03.07.2017): 7505–12. http://dx.doi.org/10.1073/pnas.1706533114.
Der volle Inhalt der QuelleDissertationen zum Thema "Olfactory circuit"
Kohl, Johannes. „A sexually dimorphic circuit switch in higher olfactory centres“. Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/265572.
Der volle Inhalt der QuelleOstrovsky, Aaron. „A sexually dimorphic olfactory circuit in the fruit fly, Drosophila melanogaster“. Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610165.
Der volle Inhalt der QuelleJayaraman, Vivek Winfree Erik Laurent Gilles. „Neural circuit dynamics and ensemble coding in the locust and fruit fly olfactory system /“. Diss., Pasadena, Calif. : California Institute of Technology, 2007. http://resolver.caltech.edu/CaltechETD:etd-05192007-195030.
Der volle Inhalt der QuelleDasGupta, Shamik. „Neural Circuit Analyses of the Olfactory System in Drosophila: Input to Output: A Dissertation“. eScholarship@UMMS, 2009. https://escholarship.umassmed.edu/gsbs_diss/438.
Der volle Inhalt der QuelleStrutz, Antonia [Verfasser], Bill S. [Gutachter] Hansson, David G. [Gutachter] Heckel und Martin Paul [Gutachter] Nawrot. „Odor Coding Strategies in the Drosophila Olfactory Circuit / Antonia Strutz ; Gutachter: Bill S. Hansson, David G. Heckel, Martin Paul Nawrot“. Jena : Friedrich-Schiller-Universität Jena, 2013. http://d-nb.info/1177639386/34.
Der volle Inhalt der QuelleMonnot, Pauline. „Rôle des interactions mécaniques entre tissus dans la mise en place du circuit olfactif du poisson-zèbre“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS113.
Der volle Inhalt der QuelleWhereas the biochemical signals guiding axon growth and neuronal migration are extensively studied, the contribution of mechanical cues in neuronal circuit formation is still poorly explored in vivo. We aim at investigating how mechanical forces influence the construction of the zebrafish olfactory circuit. This circuit forms during the morphogenesis of the olfactory placode (OP) by the passive displacement of neuronal cell bodies away from the tip of their axons. My PhD work focuses on the mechanical contribution of the adjacent eye tissue, which develops underneath the OP through extensive evagination and invagination movements, to this passive neuronal migration and to their associated axon elongation. Quantitative live cell imaging analysis during OP morphogenesis first revealed that OP and eye cells undergo correlated movements. In embryos lacking eyes, the movements of OP cell bodies are affected, resulting in thinner placodes and shorter axons, and the mechanical stress along the direction of axon elongation within the OP is reduced. Finally, extracellular matrix was observed to accumulate at the eye/OP interface, and its enzymatic degradation decreased the correlation between OP and eye cell movements. Altogether, these results suggest that the developing eye exerts traction forces on the OP through extracellular matrix, mediating proper neuronal movements and axon extension. This work sheds new light on the role of mechanical forces exchanged between developing neurons and surrounding tissues in the sculpting of neuronal circuits in vivo
Liu, Wendy Wing-Heng. „Dissecting Olfactory Circuits in Drosophila“. Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11453.
Der volle Inhalt der QuelleSanz, Diez Alvaro. „Functional study of mouse olfactory bulb inhibitory circuits“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ037/document.
Der volle Inhalt der QuelleIn the olfactory bulb periglomerular cells form a heterogeneous population with diverse molecular, synaptic, morphological and biophysical properties that have always been considered independently and never explored together. However, such diversity suggests different functional implications. On the first part of this thesis, I aim to associate, for the first time, different markers of periglomerular diversity together to put in perspective the functional implications that differebt subgroups of these cells could exert in odor processing. Periglomerular cells receive inhibitory postsynaptic currents but the circuits mediating this inhibition remain poorly understood. Using a combination of patch-clamp recordings in mouse horizontal olfactory bulb slices and optogenetics I demonstrate that centrifugal GABAergic projections from the basal forebrain strongly mediate inhibition of type 2 periglomerular cells but also granule cells and deep short axon cells
Galili, Dana Shani. „Neural circuits mediating aversive olfactory conditioning in Drosophila“. Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-175429.
Der volle Inhalt der QuelleBurton, Shawn D. „Novel Cell Types and Circuits in the Mouse Main Olfactory Bulb“. Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/686.
Der volle Inhalt der QuelleBücher zum Thema "Olfactory circuit"
Mountoufaris, George. The Role of the Clustered Protocadherins in the Assembly of Olfactory Neural Circuits. [New York, N.Y.?]: [publisher not identified], 2016.
Den vollen Inhalt der Quelle findenLiu, Wendy Wing-Heng. Dissecting Olfactory Circuits in Drosophila. 2014.
Den vollen Inhalt der Quelle findenFisch, Adam. Limbic and Olfactory Systems. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199845712.003.0276.
Der volle Inhalt der QuelleStriedter, Georg F., und R. Glenn Northcutt. Brains Through Time. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780195125689.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Olfactory circuit"
Hueston, Catherine, und Pelin C. Volkan. „Generation of Neuronal Diversity in the Peripheral Olfactory System in Drosophila“. In Decoding Neural Circuit Structure and Function, 399–418. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57363-2_16.
Der volle Inhalt der QuelleMeredith, Michael. „Suppressive Interactions During Olfactory Bulb Circuit Response to Odor: Computer Simulation“. In Olfaction and Taste XI, 443–44. Tokyo: Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68355-1_181.
Der volle Inhalt der QuelleLiu, Gary, Jessica Swanson, Brandon Pekarek, Sugi Panneerselvam, Kevin Ung, Burak Tepe, Longwen Huang und Benjamin R. Arenkiel. „A Combinatorial Approach to Circuit Mapping in the Mouse Olfactory Bulb“. In Neuromethods, 129–42. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7549-5_7.
Der volle Inhalt der QuelleKauer, John S., Joel White, David P. Wellis und Angel R. Cinelli. „Properties of Salamander Olfactory Bulb Circuits“. In Olfaction and Taste XI, 433–39. Tokyo: Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68355-1_177.
Der volle Inhalt der QuellePicco, Cristiana, Paola Gavazzo, Stuart Firestein und Anna Menini. „Responses of Isolated Olfactory Sensory Neurons to Odorants“. In Neural Circuits and Networks, 85–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58955-3_6.
Der volle Inhalt der QuelleMigliore, Michele, und Tom McTavish. „Olfactory Computation in Mitral-Granule Cell Circuits“. In Encyclopedia of Computational Neuroscience, 2139–42. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_615.
Der volle Inhalt der QuelleMigliore, Michele, und Tom McTavish. „Olfactory Computation in Mitral-Granule Cell Circuits“. In Encyclopedia of Computational Neuroscience, 1–4. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7320-6_615-4.
Der volle Inhalt der QuelleGreer, Charles A., und Juan C. Bartolomei. „Synaptic Circuitry of Olfactory Bulb Glomeruli“. In Olfaction and Taste XI, 425–28. Tokyo: Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68355-1_175.
Der volle Inhalt der QuelleNunez-Parra, Alexia, Krista Krahe, Wilson Chan und Ricardo C. Araneda. „Dissecting Neuronal Circuits Involved in Olfactory-Mediated Behaviors“. In Neuromethods, 83–94. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2944-3_5.
Der volle Inhalt der QuelleFisch, Adam J. „The Diencephalon, Basal Ganglia, & Limbic System“. In Neuroanatomy, 341–76. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190259587.003.0011.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Olfactory circuit"
Huang, Ping-Chen, David Macii und Jan M. Rabaey. „An information-theoretic framework for joint architectural and circuit level optimization for olfactory recognition processing“. In 2011 IEEE Workshop on Signal Processing Systems (SiPS). IEEE, 2011. http://dx.doi.org/10.1109/sips.2011.6088943.
Der volle Inhalt der QuelleBeyeler, Michael, Fabio Stefanini, Henning Proske, Giovanni Galizia und Elisabetta Chicca. „Exploring olfactory sensory networks: Simulations and hardware emulation“. In 2010 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2010. http://dx.doi.org/10.1109/biocas.2010.5709623.
Der volle Inhalt der QuelleAllen, J. N., H. S. Abdel-Aty-Zohdy und R. L. Ewing. „Plasticity recurrent spiking neural networks for olfactory pattern recognition“. In 48th Midwest Symposium on Circuits and Systems, 2005. IEEE, 2005. http://dx.doi.org/10.1109/mwscas.2005.1594457.
Der volle Inhalt der QuelleKim, Dong Wook, Yeong Hee Cho, Kazushi Nishimoto, Yusuke Kawakami, Susumu Kunifuji und Hiroshi Ando. „Development of aroma-Card based soundless Olfactory Display“. In 2009 16th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icecs.2009.5410784.
Der volle Inhalt der QuelleGe, Xinran, Huisheng Zhang und Jia Yan. „Neuro-inspired olfactory system: modeling complex neural circuits for efficient odor classification“. In Third International Conference on Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2023), herausgegeben von Sandeep Saxena und Cairong Zhao. SPIE, 2023. http://dx.doi.org/10.1117/12.3011500.
Der volle Inhalt der QuelleGuo, Bin, Amine Bermak, Maxime Ambard und Dominique Martinez. „A 4 ? 4 Logarithmic Spike Timing Encoding Scheme for Olfactory Sensor Applications“. In 2007 IEEE International Symposium on Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iscas.2007.378450.
Der volle Inhalt der QuelleAl Yamani, Jaber Hassan J., Farid Boussaid, Amine Bermak und Dominique Martinez. „Bio-inspired gas recognition based on the organization of the olfactory pathway“. In 2012 IEEE International Symposium on Circuits and Systems - ISCAS 2012. IEEE, 2012. http://dx.doi.org/10.1109/iscas.2012.6271503.
Der volle Inhalt der QuelleKotas, Rafal, und Zygmunt Ciota. „Olfactory event-related potentials recordings analysis based on modified EEG registration system“. In 2014 21st International Conference "Mixed Design of Integrated Circuits & Systems" (MIXDES). IEEE, 2014. http://dx.doi.org/10.1109/mixdes.2014.6872253.
Der volle Inhalt der QuelleTian, Fengchun, Xiang Fu, Haibing Wang, Jingya Zhang, Haoran Gao, Shukai Duan, Lidan Wang und Min Tian. „NORP: A Compact Neuromorphic Olfactory Recognition Processor With On-Chip Hybrid Learning“. In 2023 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, 2023. http://dx.doi.org/10.1109/icta60488.2023.10364321.
Der volle Inhalt der QuelleHuo, Dexuan, Jilin Zhang, Xinyu Dai, Jian Zhang, Chunqi Qian, Kea-Tiong Tang und Hong Chen. „ANP-G: A 28nm 1.04pJ/SOP Sub-mm2 Spiking and Back-propagation Hybrid Neural Network Asynchronous Olfactory Processor Enabling Few-shot Class-incremental On-chip Learning“. In 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). IEEE, 2023. http://dx.doi.org/10.23919/vlsitechnologyandcir57934.2023.10185410.
Der volle Inhalt der Quelle