Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Oil-structure interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Oil-structure interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Oil-structure interaction"
Amini, Azin, Maziar Mahzari, Erik Bollaert und Anton Schleiss. „FLUID-STRUCTURE INTERACTION ANALYSIS APPLIED TO OIL CONTAINMENT BOOMS“. International Oil Spill Conference Proceedings 2005, Nr. 1 (01.05.2005): 585–88. http://dx.doi.org/10.7901/2169-3358-2005-1-585.
Der volle Inhalt der QuelleChen, Jie, Neng Xi, Jia Jun Yang und Mei Ling Zhao. „Squeeze Oil-Film Fluid-Structure Interaction Analysis by the Finite Element Method“. Applied Mechanics and Materials 401-403 (September 2013): 446–49. http://dx.doi.org/10.4028/www.scientific.net/amm.401-403.446.
Der volle Inhalt der QuelleFuglem, Mark, Ian Jordaan und Greg Crocker. „Iceberg – structure interaction probabilities for design“. Canadian Journal of Civil Engineering 23, Nr. 1 (01.02.1996): 231–41. http://dx.doi.org/10.1139/l96-024.
Der volle Inhalt der QuelleYue, Hong Yuan, Jian Yun Chen und Qiang Xu. „Dynamic analysis of 1100 kV composite bushing considering oil and structure interaction effects“. MATEC Web of Conferences 272 (2019): 01011. http://dx.doi.org/10.1051/matecconf/201927201011.
Der volle Inhalt der QuelleYin, Yao, und Yiliang Liu. „FEM Analysis of Fluid-Structure Interaction in Thermal Heavy Oil Recovery Operations“. Sustainability 7, Nr. 4 (08.04.2015): 4035–48. http://dx.doi.org/10.3390/su7044035.
Der volle Inhalt der QuelleGuimarães, Murilo Menck, Camila Silveira Souza, Maria Rosângela Sigrist, Karina Back Militão Miliato und Fabiano Rodrigo da Maia. „Assessment of interactions between oil flowers and floral visitors in world biomes“. Biological Journal of the Linnean Society 134, Nr. 2 (18.06.2021): 366–80. http://dx.doi.org/10.1093/biolinnean/blab078.
Der volle Inhalt der Quelle장병춘 und 양동욱. „A Study on Fluid Structure Interaction Analysis of the Power-steering Oil Tank“. Journal of the Korean Society of Mechanical Technology 18, Nr. 2 (April 2016): 171–76. http://dx.doi.org/10.17958/ksmt.18.2.201604.171.
Der volle Inhalt der QuelleAdeeb M und Sunil Shaw. „Frankincense essential oil extraction and lead compound analysis into cancer cells using molecular docking“. International Journal of Research in Pharmaceutical Sciences 11, Nr. 1 (07.02.2020): 1080–84. http://dx.doi.org/10.26452/ijrps.v11i1.1939.
Der volle Inhalt der QuelleLi, Zhi Xin, Shi Ming Ji, Xun Lv, Si Chang Xiong, Shen Shun Ying und Yang Yu Wang. „Numerical Prediction of Manufacturing Error in Sliding Panel Structure“. Advanced Materials Research 102-104 (März 2010): 675–80. http://dx.doi.org/10.4028/www.scientific.net/amr.102-104.675.
Der volle Inhalt der QuelleTahir, Muhammad, Rafael E. Hincapie, Calvin L. Gaol, Stefanie Säfken und Leonhard Ganzer. „Flow Dynamics of Sulfate-Modified Water/Polymer Flooding in Micromodels with Modified Wettability“. Applied Sciences 10, Nr. 9 (07.05.2020): 3239. http://dx.doi.org/10.3390/app10093239.
Der volle Inhalt der QuelleDissertationen zum Thema "Oil-structure interaction"
Ticona, A. M., M. A. Rosales und J. D. Orihuela. „Correction coefficients of distortion and vibration period for buildings due to soil-structure interaction“. OP Publishing Ltd, 2020. http://hdl.handle.net/10757/656571.
Der volle Inhalt der QuelleRebufa, Jocelyn. „Vibrations de ligne d'arbre sur paliers hydrodynamiques : influence de l'état de surface“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC044/document.
Der volle Inhalt der QuelleThe hydrodynamic bearing provides good damping properties in rotating machineries. However, the performances of rotor-bearings systems are highly impacted by nonlinear effects that are difficult to analyze. The rotordynamics prediction requires advanced models for the flow in the bearings. The surface of the bearings seems to have a strong impact on the lubricant flow, acting on the static and dynamic properties of the rotating parts. This study aims to enhance the simulation of the bearings’ surface state effect on the motion of the rotating shaft. The flexible shaft interacts with textured hydrodynamic bearings. Multi-scales homogenization is used in a multi-physics algorithm in order to describe the fluid-structure interaction. Different models are used to account for the cavitation phenomenon in the bearings. Nonlinear harmonic methods allow efficient parametric studies of periodic solutions as well as their stability. Moreover, a test rig has been designed to compare predictions to real measurements. Several textured shaft samples modified with femto-seconds LASER surface texturing are tested. In most cases the experimental study showed similar results than the simulation. Enhancements of the vibration behaviors of the rotor-bearing system have been revealed for certain texturing patterns. The self-excited vibration, also known as "oil whirl" phenomenon, is stabilized on a wide rotating frequency range. However, the simulation tool does not predict well the enhancements that are observed. Vortices in surface texturing patterns have been revealed numerically with Navier-Stokes equation resolution. These results are opposed to the classical lubrication hypothesis. It is also a possible explanation of the enhancements that are experimentally measured with textured bearings
Bücher zum Thema "Oil-structure interaction"
Special Offshore Symposium China (1994 Beijing, China). The proceedings of the Special Offshore Symposium China: China/Asia offshore developments, offshore and shallow water oil/gas developments, structure analysis, hydrodynamics, fluid-structure interaction and ice. Golden, Colo: International Society of Offshore and Polar Engineers, 1994.
Den vollen Inhalt der Quelle findenBraginsky, O. B., G. M. Tatevosyan, S. V. Sedova und R. Sh Magomedov. The economic mechanism of development programs: the interaction of economic instruments. CEMI RAS, 2020. http://dx.doi.org/10.33276/978-5-8211-0787-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Oil-structure interaction"
Aveyard, Bob. „Oil and water do not mix—hydrophobic hydration“. In Surfactants, 17–24. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828600.003.0002.
Der volle Inhalt der QuelleGill, D., und M. Levinger. „Information Management And Mapping System For Subsurface Stratigraphic Analysis“. In Computers in Geology - 25 Years of Progress. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195085938.003.0014.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Oil-structure interaction"
Clauss, G. F., und W. L. Kuhnlein. „Oil Skimming Vessels: Structure-Seaway Interaction Problems and Provisions for Wave Attenuation Systems“. In Offshore Technology Conference. Offshore Technology Conference, 1992. http://dx.doi.org/10.4043/6989-ms.
Der volle Inhalt der QuelleDorival, O., A. V. Metrikine und A. Simone. „A Lattice Model to Simulate Ice-Structure Interaction“. In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57918.
Der volle Inhalt der QuelleAquelet, N., und M. Souli. „Damping Effect in Fluid-Structure Interaction: Application to Slamming Problem“. In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-2063.
Der volle Inhalt der QuelleAquelet, N., und M. Souli. „Damping Effect in Fluid-Structure Interaction: Application to Slamming Problem“. In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1968.
Der volle Inhalt der QuelleLandis, Ben, Se´bastien Muller, Margareta Petrovan-Boiarciuc, Ryan Brady und Guillaume Pe´rigaud. „Prevention of Transformer Tank Explosion: Part 4—Development of a Fluid Structure Interaction Numerical Tool“. In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77415.
Der volle Inhalt der QuelleChen, Jiun-Yih, Richard Litton, Albert Ku, Ramsay Fraser und Philippe Jeanjean. „Seismic Soil-Structure Interaction Design Considerations for Offshore Platforms“. In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54934.
Der volle Inhalt der Quelleda Costa, Alvaro Maia, Carlos de Oliveira Cardoso, Claudio dos Santos Amaral und Alejandro Andueza. „Soil-Structure Interaction of Heated Pipeline Buried in Soft Clay“. In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27193.
Der volle Inhalt der QuelleKawama, Itsuo. „A Study on the Stress Interaction Between Annular Plate and Foundation of the Oil Storage Tank“. In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-3072.
Der volle Inhalt der QuelleYamamoto, Marcio, Motohiko Murai, Katsuya Maeda und Shotaro Uto. „An Experimental Study of the Interaction Between Pipe Structure and Internal Flow“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79312.
Der volle Inhalt der QuelleShu, Cheng, Li Hong und Zhang Dongxu. „Strength Analysis of Oil Tanker Under Numerical Wave“. In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83436.
Der volle Inhalt der Quelle