Zeitschriftenartikel zum Thema „OGG1 inhibitors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "OGG1 inhibitors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Visnes, Torkild, Carlos Benítez-Buelga, Armando Cázares-Körner, Kumar Sanjiv, Bishoy M. F. Hanna, Oliver Mortusewicz, Varshni Rajagopal et al. „Targeting OGG1 arrests cancer cell proliferation by inducing replication stress“. Nucleic Acids Research 48, Nr. 21 (19.11.2020): 12234–51. http://dx.doi.org/10.1093/nar/gkaa1048.
Der volle Inhalt der QuelleKim, Ki Cheon, In Kyung Lee, Kyoung Ah Kang, Ji Won Cha, Suk Ju Cho, Soo Young Na, Sungwook Chae, Hye Sun Kim, Suhkmann Kim und Jin Won Hyun. „7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1“. BioMed Research International 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/863720.
Der volle Inhalt der QuelleBehrouzi, Adib, Hanyu Xia, Eric L. Thompson, Mark R. Kelley und Jill C. Fehrenbacher. „Oxidative DNA Damage and Cisplatin Neurotoxicity Is Exacerbated by Inhibition of OGG1 Glycosylase Activity and APE1 Endonuclease Activity in Sensory Neurons“. International Journal of Molecular Sciences 23, Nr. 3 (08.02.2022): 1909. http://dx.doi.org/10.3390/ijms23031909.
Der volle Inhalt der QuelleAguilera-Aguirre, Leopoldo, Wenging Hao, Lang Pan, Xiaoxue Li, Alfredo Saavedra-Molina, Attila Bacsi, Zsolt Radak et al. „Pollen-induced oxidative DNA damage response regulates miRNAs controlling allergic inflammation“. American Journal of Physiology-Lung Cellular and Molecular Physiology 313, Nr. 6 (01.12.2017): L1058—L1068. http://dx.doi.org/10.1152/ajplung.00141.2017.
Der volle Inhalt der QuelleDonley, Nathan, Pawel Jaruga, Erdem Coskun, Miral Dizdaroglu, Amanda K. McCullough und R. Stephen Lloyd. „Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1)“. ACS Chemical Biology 10, Nr. 10 (07.08.2015): 2334–43. http://dx.doi.org/10.1021/acschembio.5b00452.
Der volle Inhalt der QuelleTahara, Yu-ki, Anna M. Kietrys, Marian Hebenbrock, Yujeong Lee, David L. Wilson und Eric T. Kool. „Dual Inhibitors of 8-Oxoguanine Surveillance by OGG1 and NUDT1“. ACS Chemical Biology 14, Nr. 12 (17.10.2019): 2606–15. http://dx.doi.org/10.1021/acschembio.9b00490.
Der volle Inhalt der QuelleWang, Jiayu, Noemi Nagy und Maria G. Masucci. „The Epstein–Barr virus nuclear antigen-1 upregulates the cellular antioxidant defense to enable B-cell growth transformation and immortalization“. Oncogene 39, Nr. 3 (11.09.2019): 603–16. http://dx.doi.org/10.1038/s41388-019-1003-3.
Der volle Inhalt der QuelleAhmadimanesh, Mahnaz, Mohammad Reza Abbaszadegan, Dorsa Morshedi Rad, Seyed Adel Moallem, Amir Hooshang Mohammadpour, Mohammad Hossein Ghahremani, Farhad Farid Hosseini et al. „Effects of selective serotonin reuptake inhibitors on DNA damage in patients with depression“. Journal of Psychopharmacology 33, Nr. 11 (26.09.2019): 1364–76. http://dx.doi.org/10.1177/0269881119874461.
Der volle Inhalt der QuelleSlupianek, Artur, Rafal Falinski, Pawel Znojek, Tomasz Stoklosa, Sylwia Flis, Valentina Doneddu, Ewelina Synowiec, Janusz Blasiak, Alfonso Bellacosa und Tomasz Skorski. „BCR-ABL1 Kinase Inhibits DNA Glycosylases to Enhance Oxidative DNA Damage and Stimulate Genomic Instability“. Blood 120, Nr. 21 (16.11.2012): 520. http://dx.doi.org/10.1182/blood.v120.21.520.520.
Der volle Inhalt der QuelleGiovannini, Sara, Marie-Christine Weller, Simone Repmann, Holger Moch und Josef Jiricny. „Synthetic lethality between BRCA1 deficiency and poly(ADP-ribose) polymerase inhibition is modulated by processing of endogenous oxidative DNA damage“. Nucleic Acids Research 47, Nr. 17 (22.07.2019): 9132–43. http://dx.doi.org/10.1093/nar/gkz624.
Der volle Inhalt der QuelleMahajan, Tushar, Mari Ytre-Arne, Pernille Strøm-Andersen, Bjørn Dalhus und Lise-Lotte Gundersen. „Synthetic Routes to N-9 Alkylated 8-Oxoguanines; Weak Inhibitors of the Human DNA Glycosylase OGG1“. Molecules 20, Nr. 9 (02.09.2015): 15944–65. http://dx.doi.org/10.3390/molecules200915944.
Der volle Inhalt der QuelleLi, Chunshuang, Yaoyao Xue, Xueqing Ba und Ruoxi Wang. „The Role of 8-oxoG Repair Systems in Tumorigenesis and Cancer Therapy“. Cells 11, Nr. 23 (27.11.2022): 3798. http://dx.doi.org/10.3390/cells11233798.
Der volle Inhalt der QuelleTempka, Dominika, Paulina Tokarz, Kinga Chmielewska, Magdalena Kluska, Julita Pietrzak, Żaneta Rygielska, László Virág und Agnieszka Robaszkiewicz. „Downregulation of PARP1 transcription by CDK4/6 inhibitors sensitizes human lung cancer cells to anticancer drug-induced death by impairing OGG1-dependent base excision repair“. Redox Biology 15 (Mai 2018): 316–26. http://dx.doi.org/10.1016/j.redox.2017.12.017.
Der volle Inhalt der QuelleHajnády, Zoltán, Máté Nagy-Pénzes, Máté A. Demény, Katalin Kovács, Tarek El-Hamoly, József Maléth, Péter Hegyi, Zsuzsanna Polgár, Csaba Hegedűs und László Virág. „OGG1 Inhibition Reduces Acinar Cell Injury in a Mouse Model of Acute Pancreatitis“. Biomedicines 10, Nr. 10 (12.10.2022): 2543. http://dx.doi.org/10.3390/biomedicines10102543.
Der volle Inhalt der QuelleHanna, Bishoy M. F., Thomas Helleday und Oliver Mortusewicz. „OGG1 Inhibitor TH5487 Alters OGG1 Chromatin Dynamics and Prevents Incisions“. Biomolecules 10, Nr. 11 (26.10.2020): 1483. http://dx.doi.org/10.3390/biom10111483.
Der volle Inhalt der QuelleMakhdoumi, Pouran, Hooshyar Hossini, Ghulam Md Ashraf und Mojtaba Limoee. „Molecular Mechanism of Aniline Induced Spleen Toxicity and Neuron Toxicity in Experimental Rat Exposure: A Review“. Current Neuropharmacology 17, Nr. 3 (14.02.2019): 201–13. http://dx.doi.org/10.2174/1570159x16666180803164238.
Der volle Inhalt der QuelleLin, Po-Han. „Association of DNA repair gene-mutation, mutation burden and, neoantigen load in breast cancer.“ Journal of Clinical Oncology 36, Nr. 5_suppl (10.02.2018): 9. http://dx.doi.org/10.1200/jco.2018.36.5_suppl.9.
Der volle Inhalt der QuelleVisnes, Torkild, Armando Cázares-Körner, Wenjing Hao, Olov Wallner, Geoffrey Masuyer, Olga Loseva, Oliver Mortusewicz et al. „Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation“. Science 362, Nr. 6416 (15.11.2018): 834–39. http://dx.doi.org/10.1126/science.aar8048.
Der volle Inhalt der QuelleLe, Kang, Zenaide Quezado, Sayuri Kamimura, Meghann L. Smith, Yuki Tahara, Yujeong Lee, Laxminath Tumburu, Anna Conrey, Eric T. Kool und Swee Lay Thein. „8-Oxoguanine DNA Glycosylase 1 Inhibition Suppresses Inflammatory Responses in Sickle Cell Disease“. Blood 142, Supplement 1 (28.11.2023): 2482. http://dx.doi.org/10.1182/blood-2023-182157.
Der volle Inhalt der QuelleHanna, Bishoy M. F., Maurice Michel, Thomas Helleday und Oliver Mortusewicz. „NEIL1 and NEIL2 Are Recruited as Potential Backup for OGG1 upon OGG1 Depletion or Inhibition by TH5487“. International Journal of Molecular Sciences 22, Nr. 9 (27.04.2021): 4542. http://dx.doi.org/10.3390/ijms22094542.
Der volle Inhalt der QuelleHuang, Hai-Li, Ya-Peng Shi, Hui-Juan He, Ya-Hong Wang, Ting Chen, La-Wei Yang, Teng Yang et al. „MiR-4673 Modulates Paclitaxel-Induced Oxidative Stress and Loss of Mitochondrial Membrane Potential by Targeting 8-Oxoguanine-DNA Glycosylase-1“. Cellular Physiology and Biochemistry 42, Nr. 3 (2017): 889–900. http://dx.doi.org/10.1159/000478644.
Der volle Inhalt der QuelleLiu, Jin-Peng, Mayumi Komachi, Hideaki Tomura, Chihiro Mogi, Alatangaole Damirin, Masayuki Tobo, Mutsumi Takano et al. „Ovarian cancer G protein-coupled receptor 1-dependent and -independent vascular actions to acidic pH in human aortic smooth muscle cells“. American Journal of Physiology-Heart and Circulatory Physiology 299, Nr. 3 (September 2010): H731—H742. http://dx.doi.org/10.1152/ajpheart.00977.2009.
Der volle Inhalt der QuelleLe, Kang, Zenaide Quezado, Haiou Li, Sayuri Kamimura, Meghann L. Smith, Yuki Tahara, Yujeong Lee et al. „8-Oxoguanine DNA Glycosylase 1 Recruits Transcription Factor STAT1 to Promote the Inflammatory Responses in Sickle Cell Disease“. Blood 144, Supplement 1 (05.11.2024): 2490. https://doi.org/10.1182/blood-2024-201619.
Der volle Inhalt der QuelleXu, Xiaofang, Dianhua Qiao, Lang Pan, Istvan Boldogh, Yingxin Zhao und Allan R. Brasier. „RELA∙8-Oxoguanine DNA Glycosylase1 Is an Epigenetic Regulatory Complex Coordinating the Hexosamine Biosynthetic Pathway in RSV Infection“. Cells 11, Nr. 14 (15.07.2022): 2210. http://dx.doi.org/10.3390/cells11142210.
Der volle Inhalt der QuelleChen, Yuwei, und Jun Wang. „1-Deoxynojirimycin Attenuates High-Glucose-Induced Oxidative DNA Damage via Activating NRF2/OGG1 Signaling“. Applied Sciences 14, Nr. 8 (10.04.2024): 3186. http://dx.doi.org/10.3390/app14083186.
Der volle Inhalt der QuelleMuhseen, Ziyad Tariq, Mustafa Hussein Ali, Nawar Rushdi Jaber, Dheyaa Shakir Mashrea, Ali Mamoon Alfalki und Guanglin Li. „Determination of Novel Anti-Cancer Agents by Targeting OGG1 Enzyme Using Integrated Bioinformatics Methods“. International Journal of Environmental Research and Public Health 18, Nr. 24 (16.12.2021): 13290. http://dx.doi.org/10.3390/ijerph182413290.
Der volle Inhalt der QuelleRamirez, Jessica, Elizabeth Paris, Sanjib Basu und Animesh Barua. „Abstract A015: Age-associated molecular changes may predispose the ovary to malignant transformation leading to ovarian cancer (OVCA)“. Cancer Research 83, Nr. 2_Supplement_1 (15.01.2023): A015. http://dx.doi.org/10.1158/1538-7445.agca22-a015.
Der volle Inhalt der QuelleBhatia, Shama, Yongran Yan, Mina Ly und Peter G. Wells. „Sex- and OGG1-dependent reversal of in utero ethanol-initiated changes in postnatal behaviour by neonatal treatment with the histone deacetylase inhibitor trichostatin A (TSA) in oxoguanine glycosylase 1 (Ogg1) knockout mice“. Toxicology Letters 356 (März 2022): 121–31. http://dx.doi.org/10.1016/j.toxlet.2021.12.010.
Der volle Inhalt der QuelleKuck, Jamie L., Boniface O. Obiako, Olena M. Gorodnya, Viktor M. Pastukh, Justin Kua, Jon D. Simmons und Mark N. Gillespie. „Mitochondrial DNA damage-associated molecular patterns mediate a feed-forward cycle of bacteria-induced vascular injury in perfused rat lungs“. American Journal of Physiology-Lung Cellular and Molecular Physiology 308, Nr. 10 (15.05.2015): L1078—L1085. http://dx.doi.org/10.1152/ajplung.00015.2015.
Der volle Inhalt der QuelleIchimonji, Isao, Hideaki Tomura, Chihiro Mogi, Koichi Sato, Haruka Aoki, Takeshi Hisada, Kunio Dobashi, Tamotsu Ishizuka, Masatomo Mori und Fumikazu Okajima. „Extracellular acidification stimulates IL-6 production and Ca2+ mobilization through proton-sensing OGR1 receptors in human airway smooth muscle cells“. American Journal of Physiology-Lung Cellular and Molecular Physiology 299, Nr. 4 (Oktober 2010): L567—L577. http://dx.doi.org/10.1152/ajplung.00415.2009.
Der volle Inhalt der QuelleBaebler, K., C. Maeyashiki, P. Busenhart, M. Schwarzfischer, K. Atrott, S. Lang, M. Spalinger, M. Scharl, G. Rogler und C. de Vallière. „P087 A novel OGR1 (GPR68) inhibitor attenuates inflammation in a murine model of Acute Colitis“. Journal of Crohn's and Colitis 12, supplement_1 (16.01.2018): S137. http://dx.doi.org/10.1093/ecco-jcc/jjx180.214.
Der volle Inhalt der QuelleBaebler, Katharina, Cheryl de Valliere, Chiaki Maeyashiki, Philipp Busenhart, Marlene Schwarzfischer, Kirstin Atrott, Silvia Lang, Marianne Spalinger, Michael M. Scharl und Gerhard Rogler. „Tu1775 - A Novel Ogr1 (GPR68) Inhibitor Attenuates Inflammation in a Murine Model of Acute Colitis“. Gastroenterology 154, Nr. 6 (Mai 2018): S—1016. http://dx.doi.org/10.1016/s0016-5085(18)33401-2.
Der volle Inhalt der QuelleDing, Shenglong, Ji Xu, Qichen Zhang, Fangyi Chen, Jihong Zhang, Keke Gui, Min Xiong, Bing Li, Zhiyong Ruan und Mingdong Zhao. „OGR1 mediates the inhibitory effects of acidic environment on proliferation and angiogenesis of endothelial progenitor cells“. Cell Biology International 43, Nr. 11 (16.07.2019): 1307–16. http://dx.doi.org/10.1002/cbin.11179.
Der volle Inhalt der QuelleWang, Ju-Qiang, Junko Kon, Chihiro Mogi, Masayuki Tobo, Alatangaole Damirin, Koichi Sato, Mayumi Komachi et al. „TDAG8 Is a Proton-sensing and Psychosine-sensitive G-protein-coupled Receptor“. Journal of Biological Chemistry 279, Nr. 44 (23.08.2004): 45626–33. http://dx.doi.org/10.1074/jbc.m406966200.
Der volle Inhalt der QuelleNwokwu, Chukwumaobim Daniel, Adam Y. Xiao, Lynn Harrison und Gergana G. Nestorova. „Identification of microRNA-mRNA regulatory network associated with oxidative DNA damage in human astrocytes“. ASN Neuro 14 (Januar 2022): 175909142211017. http://dx.doi.org/10.1177/17590914221101704.
Der volle Inhalt der QuelleLin, Yunfu, und John H. Wilson. „Transcription-Induced CAG Repeat Contraction in Human Cells Is Mediated in Part by Transcription-Coupled Nucleotide Excision Repair“. Molecular and Cellular Biology 27, Nr. 17 (25.06.2007): 6209–17. http://dx.doi.org/10.1128/mcb.00739-07.
Der volle Inhalt der QuelleHe, Xiaofei, Mark Wunderlich, Benjamin Mizukawa, James C. Mulloy, Saran Feng, Lauren Lawley, Caleb Hawkins et al. „Proton Sensor GPR68 Is Essential to Maintain Myeloid Malignancies“. Blood 132, Supplement 1 (29.11.2018): 1353. http://dx.doi.org/10.1182/blood-2018-99-110399.
Der volle Inhalt der QuelleDas, Rickta Rani, Md Atiar Rahman, Salahuddin Qader Al-Araby, Md Shahidul Islam, Md Mamunur Rashid, Nouf Abubakr Babteen, Afnan M. Alnajeebi et al. „The Antioxidative Role of Natural Compounds from a Green Coconut Mesocarp Undeniably Contributes to Control Diabetic Complications as Evidenced by the Associated Genes and Biochemical Indexes“. Oxidative Medicine and Cellular Longevity 2021 (27.07.2021): 1–22. http://dx.doi.org/10.1155/2021/9711176.
Der volle Inhalt der QuelleHoell, Jessica I., Sebastian Ginzel, Cornelia Eckert, Michael Gombert, Ute Fischer, Martin Stanulla, Martin Schrappe et al. „Mutational Landscape of Pediatric Acute Lymphoblastic Leukemia Relapsing after Allogeneic Stem Cell Transplantation“. Blood 128, Nr. 22 (02.12.2016): 601. http://dx.doi.org/10.1182/blood.v128.22.601.601.
Der volle Inhalt der QuelleKrieger, Nancy S., und David A. Bushinsky. „Pharmacological inhibition of intracellular calcium release blocks acid-induced bone resorption“. American Journal of Physiology-Renal Physiology 300, Nr. 1 (Januar 2011): F91—F97. http://dx.doi.org/10.1152/ajprenal.00276.2010.
Der volle Inhalt der QuelleBahl, Martin Iain, Søren J. Sørensen, Lars Hestbjerg Hansen und Tine Rask Licht. „Effect of Tetracycline on Transfer and Establishment of the Tetracycline-Inducible Conjugative Transposon Tn916 in the Guts of Gnotobiotic Rats“. Applied and Environmental Microbiology 70, Nr. 2 (Februar 2004): 758–64. http://dx.doi.org/10.1128/aem.70.2.758-764.2004.
Der volle Inhalt der QuelleFang, Jing, Xiaona Liu, Lyndsey Bolanos, Brenden Barker, Carmela Rigolino, Agostino Cortelezzi, Esther Natalie Oliva, Kyle J. MacBeth, Kakajan Komurov und Daniel T. Starczynowski. „A Calcium-Dependent Pathway Determines Response to Lenalidomide in Del(5q) Myelodysplastic Syndromes“. Blood 124, Nr. 21 (06.12.2014): 1898. http://dx.doi.org/10.1182/blood.v124.21.1898.1898.
Der volle Inhalt der QuelleZhu, Liqian, Xiaotian Fu, Chen Yuan, Xinyi Jiang und Gaiping Zhang. „Induction of Oxidative DNA Damage in Bovine Herpesvirus 1 Infected Bovine Kidney Cells (MDBK Cells) and Human Tumor Cells (A549 Cells and U2OS Cells)“. Viruses 10, Nr. 8 (26.07.2018): 393. http://dx.doi.org/10.3390/v10080393.
Der volle Inhalt der QuelleTanushi, Xhaferr, Guillaume Pinna, Marie Vandamme, Capucine Siberchicot, Ostiane D’Augustin, Anne-Marie Di Guilmi, J. Pablo Radicella et al. „OGG1 competitive inhibitors show important off-target effects by directly inhibiting efflux pumps and disturbing mitotic progression“. Frontiers in Cell and Developmental Biology 11 (03.02.2023). http://dx.doi.org/10.3389/fcell.2023.1124960.
Der volle Inhalt der QuelleSamaila, Abdullahi, Rusliza Basir, Nur Aimi Liyana Abdul Aziz, Abdusalam Abdullah Alarabei, Mukhtar Lawal Gambo, Maizaton Atmadini Abdullah, Mohd Khairi Hussain, Norshariza Nordin und Roslaini Abd Majid. „Modulation of 8-Oxoguanine DNA Glycosylase 1 (OGG1) Alleviated Anemia Severity and Excessive Cytokines Release during Plasmodium berghei Malaria in Mice“. Iranian Journal of Parasitology, 08.12.2024. https://doi.org/10.18502/ijpa.v19i4.17163.
Der volle Inhalt der QuelleBaquero, Juan Miguel, Erik Marchena-Perea, Rocío Mirabet, Raúl Torres-Ruiz, Carmen Blanco-Aparicio, Sandra Rodríguez-Perales, Thomas Helleday, Carlos Benítez-Buelga, Javier Benítez und Ana Osorio. „OGG1 Inhibition Triggers Synthetic Lethality and Enhances The Effect of PARP Inhibitor Olaparib in BRCA1-Deficient TNBC Cells“. Frontiers in Oncology 12 (10.05.2022). http://dx.doi.org/10.3389/fonc.2022.888810.
Der volle Inhalt der QuelleBaquero, Juan Miguel, Carlos Benítez-Buelga, Varshni Rajagopal, Zhao Zhenjun, Raúl Torres-Ruiz, Sarah Müller, Bishoy M. F. Hanna et al. „Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects“. Scientific Reports 11, Nr. 1 (10.02.2021). http://dx.doi.org/10.1038/s41598-021-82917-7.
Der volle Inhalt der QuelleZhong, Yunxiao, Xinya Zhang, Ruibing Feng, Yu Fan, Zhang Zhang, Qing‐Wen Zhang, Jian‐Bo Wan, Yitao Wang, Hua Yu und Guodong Li. „OGG1: An emerging multifunctional therapeutic target for the treatment of diseases caused by oxidative DNA damage“. Medicinal Research Reviews, 09.08.2024. http://dx.doi.org/10.1002/med.22068.
Der volle Inhalt der Quelle„Dual Inhibitors of OGG1/NUDT1 for Probing Disease States“. Synfacts 16, Nr. 02 (21.01.2020): 0223. http://dx.doi.org/10.1055/s-0039-1691638.
Der volle Inhalt der QuelleSavino, Luca, Maria Carmela Di Marcantonio, Carmelo Moscatello, Roberto Cotellese, Lucia Centurione, Raffaella Muraro, Gitana Maria Aceto und Gabriella Mincione. „Effects of H2O2 Treatment Combined With PI3K Inhibitor and MEK Inhibitor in AGS Cells: Oxidative Stress Outcomes in a Model of Gastric Cancer“. Frontiers in Oncology 12 (16.03.2022). http://dx.doi.org/10.3389/fonc.2022.860760.
Der volle Inhalt der Quelle