Zeitschriftenartikel zum Thema „OER reaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "OER reaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Rahman, Sheikh Tareq, Kyong Yop Rhee und Soo-Jin Park. „Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives“. Nanotechnology Reviews 10, Nr. 1 (01.01.2021): 137–57. http://dx.doi.org/10.1515/ntrev-2021-0008.
Der volle Inhalt der QuelleYan, Zhenwei, Shuaihui Guo, Zhaojun Tan, Lijun Wang, Gang Li, Mingqi Tang, Zaiqiang Feng, Xianjie Yuan, Yingjia Wang und Bin Cao. „Research Advances of Non-Noble Metal Catalysts for Oxygen Evolution Reaction in Acid“. Materials 17, Nr. 7 (03.04.2024): 1637. http://dx.doi.org/10.3390/ma17071637.
Der volle Inhalt der QuelleMorales, Dulce M., Mariya A. Kazakova, Maximilian Purcel, Justus Masa und Wolfgang Schuhmann. „The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions“. Journal of Solid State Electrochemistry 24, Nr. 11-12 (01.06.2020): 2901–6. http://dx.doi.org/10.1007/s10008-020-04667-2.
Der volle Inhalt der QuelleHong, Yu-Rim, Sungwook Mhin, Jiseok Kwon, Won-Sik Han, Taeseup Song und HyukSu Han. „Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions“. Royal Society Open Science 5, Nr. 9 (September 2018): 180927. http://dx.doi.org/10.1098/rsos.180927.
Der volle Inhalt der QuelleKim, Yohan, Seongmin Kim, Minyoung Shim, Yusik Oh, Kug-Seung Lee, Yousung Jung und Hye Ryung Byon. „Alteration of Oxygen Evolution Mechanisms in Layered LiCoO2 Structures By Intercalation of Alkali Metal Ions“. ECS Meeting Abstracts MA2022-01, Nr. 34 (07.07.2022): 1356. http://dx.doi.org/10.1149/ma2022-01341356mtgabs.
Der volle Inhalt der QuelleWan, Xin, Yingjie Song, Hua Zhou und Mingfei Shao. „Layered Double Hydroxides for Oxygen Evolution Reaction towards Efficient Hydrogen Generation“. Energy Material Advances 2022 (07.09.2022): 1–17. http://dx.doi.org/10.34133/2022/9842610.
Der volle Inhalt der QuelleFukushima, Tomohiro, Masaki Itatani und Kei Murakoshi. „(Invited) Evaluation of Oxygen Evolution Reaction Electrodes through Machine-Learning Analysis and in-Situ Electrochemical Spectroscopy“. ECS Meeting Abstracts MA2024-02, Nr. 59 (22.11.2024): 4023. https://doi.org/10.1149/ma2024-02594023mtgabs.
Der volle Inhalt der QuelleChae, Sangwoo, Akihito Shio, Tomoya Kishida, Kosuke Furutono, Yumi Kojima, Gasidit Panomsuwan und Takahiro Ishizaki. „Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction“. Materials 17, Nr. 12 (17.06.2024): 2963. http://dx.doi.org/10.3390/ma17122963.
Der volle Inhalt der QuelleLin, Shiru, Haoxiang Xu, Yekun Wang, Xiao Cheng Zeng und Zhongfang Chen. „Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning“. Journal of Materials Chemistry A 8, Nr. 11 (2020): 5663–70. http://dx.doi.org/10.1039/c9ta13404b.
Der volle Inhalt der QuelleWu, Hengbo, Jie Wang, Wei Jin und Zexing Wu. „Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis“. Nanoscale 12, Nr. 36 (2020): 18497–522. http://dx.doi.org/10.1039/d0nr04458j.
Der volle Inhalt der QuelleÖztürk, Secil, Yu-Xuan Xiao, Dennis Dietrich, Beatriz Giesen, Juri Barthel, Jie Ying, Xiao-Yu Yang und Christoph Janiak. „Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions“. Beilstein Journal of Nanotechnology 11 (11.05.2020): 770–81. http://dx.doi.org/10.3762/bjnano.11.62.
Der volle Inhalt der QuelleJeon, Jaeeun, Kyoung Ryeol Park, Kang Min Kim, Daehyeon Ko, HyukSu Han, Nuri Oh, Sunghwan Yeo, Chisung Ahn und Sungwook Mhin. „CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions“. Nanomaterials 12, Nr. 6 (16.03.2022): 983. http://dx.doi.org/10.3390/nano12060983.
Der volle Inhalt der QuelleYao, Bin, Youzhou He, Song Wang, Hongfei Sun und Xingyan Liu. „Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction“. International Journal of Molecular Sciences 23, Nr. 11 (27.05.2022): 6036. http://dx.doi.org/10.3390/ijms23116036.
Der volle Inhalt der QuelleXu, Junhua, Daobin Liu, Carmen Lee, Pierre Feydi, Marlene Chapuis, Jing Yu, Emmanuel Billy, Qingyu Yan und Jean-Christophe P. Gabriel. „Efficient Electrocatalyst Nanoparticles from Upcycled Class II Capacitors“. Nanomaterials 12, Nr. 15 (05.08.2022): 2697. http://dx.doi.org/10.3390/nano12152697.
Der volle Inhalt der QuelleKim, Jeheon, Tomohiro Fukushima, Ruifeng Zhou und Kei Murakoshi. „Revealing High Oxygen Evolution Catalytic Activity of Fluorine-Doped Carbon in Alkaline Media“. Materials 12, Nr. 2 (10.01.2019): 211. http://dx.doi.org/10.3390/ma12020211.
Der volle Inhalt der QuelleSui, Chenxi, Kai Chen, Liming Zhao, Li Zhou und Qu-Quan Wang. „MoS2-modified porous gas diffusion layer with air–solid–liquid interface for efficient electrocatalytic water splitting“. Nanoscale 10, Nr. 32 (2018): 15324–31. http://dx.doi.org/10.1039/c8nr04082f.
Der volle Inhalt der QuelleIkezawa, Atsunori, Kotaro Seki und Hajime Arai. „Rational Placement of Catalysts for Oxygen Reduction and Evolution Reactions Based on the Reaction Sites in Porous Gas Diffusion Electrodes“. ECS Meeting Abstracts MA2022-02, Nr. 4 (09.10.2022): 522. http://dx.doi.org/10.1149/ma2022-024522mtgabs.
Der volle Inhalt der QuelleMilikić, Jadranka, Aldona Balčiūnaitė, Zita Sukackienė, Dušan Mladenović, Diogo M. F. Santos, Loreta Tamašauskaitė-Tamašiūnaitė und Biljana Šljukić. „Bimetallic Co-Based (CoM, M = Mo, Fe, Mn) Coatings for High-Efficiency Water Splitting“. Materials 14, Nr. 1 (28.12.2020): 92. http://dx.doi.org/10.3390/ma14010092.
Der volle Inhalt der QuelleChen, Xiaodong, Jianqiao Liu, Tiefeng Yuan, Zhiyuan Zhang, Chunyu Song, Shuai Yang, Xin Gao, Nannan Wang und Lifeng Cui. „Recent advances in earth-abundant first-row transition metal (Fe, Co and Ni)-based electrocatalysts for the oxygen evolution reaction“. Energy Materials 2, Nr. 4 (2022): 28. http://dx.doi.org/10.20517/energymater.2022.30.
Der volle Inhalt der QuelleElbaz, Lior, und Wenjamin Moschkowitsch. „Electrocatalyzing Oxygen Evolution Reaction with Nifeooh Aerogels“. ECS Meeting Abstracts MA2022-02, Nr. 44 (09.10.2022): 1680. http://dx.doi.org/10.1149/ma2022-02441680mtgabs.
Der volle Inhalt der QuelleDymerska, Anna, Wojciech Kukułka, Marcin Biegun und Ewa Mijowska. „Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction“. Materials 13, Nr. 18 (04.09.2020): 3918. http://dx.doi.org/10.3390/ma13183918.
Der volle Inhalt der QuelleGarcía Caballero, Ariadna D., und Jesus Adrián Diaz-Real. „Alternative Technique to RDE to Evaluate Photoelectrocatalysts for ORR“. ECS Meeting Abstracts MA2024-01, Nr. 44 (09.08.2024): 2438. http://dx.doi.org/10.1149/ma2024-01442438mtgabs.
Der volle Inhalt der QuelleAsad, Muhammad, Afzal Shah, Faiza Jan Iftikhar, Rafia Nimal, Jan Nisar und Muhammad Abid Zia. „Development of a Binder-Free Tetra-Metallic Oxide Electrocatalyst for Efficient Oxygen Evolution Reaction“. Sustainable Chemistry 3, Nr. 3 (21.06.2022): 286–99. http://dx.doi.org/10.3390/suschem3030018.
Der volle Inhalt der QuelleKim, Kyung-Hwan, und Yun-Hyuk Choi. „Surface oxidation of cobalt carbonate and oxide nanowires by electrocatalytic oxygen evolution reaction in alkaline solution“. Materials Research Express 9, Nr. 3 (01.03.2022): 034001. http://dx.doi.org/10.1088/2053-1591/ac5f89.
Der volle Inhalt der QuellePuthiyapura, Vinod Kumar, Christopher Mark Zalitis und James Stevens. „Gas Diffusion Electrode for Oxygen Evolution Reaction Catalyst Testing“. ECS Meeting Abstracts MA2023-02, Nr. 37 (22.12.2023): 1726. http://dx.doi.org/10.1149/ma2023-02371726mtgabs.
Der volle Inhalt der QuelleShafath, Sadiyah, Khulood Logade, Anand Kumar und Ibrahim Abu Reesh. „(Digital Presentation) Multifunctional Lanthanum Perovskite Electrocatalysts (LaMnxCo1-xO3 (0≤x≤1)) for Alkaline Medium Methanol Oxidation and Oxygen Catalysis“. ECS Meeting Abstracts MA2022-02, Nr. 43 (09.10.2022): 1629. http://dx.doi.org/10.1149/ma2022-02431629mtgabs.
Der volle Inhalt der QuelleZhang, Pengfei, Hongmei Qiu, Huicong Li, Jiangang He, Yingying Xu und Rongming Wang. „Nonmetallic Active Sites on Nickel Phosphide in Oxygen Evolution Reaction“. Nanomaterials 12, Nr. 7 (29.03.2022): 1130. http://dx.doi.org/10.3390/nano12071130.
Der volle Inhalt der QuelleGeppert, Janis, Philipp Röse und Ulrike Krewer. „The Microkinetic Performance Barriers of Ruthenium and Iridium Oxides during the Electrocatalytic Oxygen Evolution Reaction“. ECS Meeting Abstracts MA2022-01, Nr. 34 (07.07.2022): 1370. http://dx.doi.org/10.1149/ma2022-01341370mtgabs.
Der volle Inhalt der QuelleElbaz, Lior. „(Keynote) Development of Advanced High Surface Area Metal Oxide Aerogels for Oxygen Evolution Reaction Electrocatalysis“. ECS Meeting Abstracts MA2023-02, Nr. 58 (22.12.2023): 2793. http://dx.doi.org/10.1149/ma2023-02582793mtgabs.
Der volle Inhalt der QuelleGao, Chang, Haiyu Yao, Peijie Wang, Min Zhu, Xue-Rong Shi und Shusheng Xu. „Carbon-Based Composites for Oxygen Evolution Reaction Electrocatalysts: Design, Fabrication, and Application“. Materials 17, Nr. 10 (11.05.2024): 2265. http://dx.doi.org/10.3390/ma17102265.
Der volle Inhalt der QuelleKim, Myeong-Geun, und Sung Jong Yoo. „Surface Reconstruction of Iridium Nanoparticles for Enhanced Oxygen Evolution Reaction in Alkaline Medium“. ECS Meeting Abstracts MA2022-01, Nr. 34 (07.07.2022): 1400. http://dx.doi.org/10.1149/ma2022-01341400mtgabs.
Der volle Inhalt der QuelleDogutan, Dilek K., D. Kwabena Bediako, Daniel J. Graham, Christopher M. Lemon und Daniel G. Nocera. „Proton-coupled electron transfer chemistry of hangman macrocycles: Hydrogen and oxygen evolution reactions“. Journal of Porphyrins and Phthalocyanines 19, Nr. 01-03 (Januar 2015): 1–8. http://dx.doi.org/10.1142/s1088424614501016.
Der volle Inhalt der QuelleChoi, Yun-Hyuk. „Electrocatalytic Activities of High-Entropy Oxides for the Oxygen Evolution Reaction“. ECS Meeting Abstracts MA2023-02, Nr. 54 (22.12.2023): 2604. http://dx.doi.org/10.1149/ma2023-02542604mtgabs.
Der volle Inhalt der QuelleEskandrani, Areej A., Shimaa M. Ali und Hibah M. Al-Otaibi. „Study of the Oxygen Evolution Reaction at Strontium Palladium Perovskite Electrocatalyst in Acidic Medium“. International Journal of Molecular Sciences 21, Nr. 11 (27.05.2020): 3785. http://dx.doi.org/10.3390/ijms21113785.
Der volle Inhalt der QuelleVitale-Sullivan, Molly E., Quinn Quinn Carvalho und Kelsey A. Stoerzinger. „Facet-Dependent Selectivity of Rutile IrO2 for Oxygen and Chlorine Evolution Reactions“. ECS Meeting Abstracts MA2023-01, Nr. 50 (28.08.2023): 2577. http://dx.doi.org/10.1149/ma2023-01502577mtgabs.
Der volle Inhalt der QuelleCheng, J., P. Ganesan, Z. Wang, M. Zhang, G. Zhang, N. Maeda, J. Matsuda, M. Yamauchi, B. Chi und N. Nakashima. „Bifunctional electrochemical properties of La0.8Sr0.2Co0.8M0.2O3−δ (M = Ni, Fe, Mn, and Cu): efficient elemental doping based on a structural and pH-dependent study“. Materials Advances 3, Nr. 1 (2022): 272–81. http://dx.doi.org/10.1039/d1ma00632k.
Der volle Inhalt der QuelleYin, Shikang, Xiaoxue Zhao, Enhui Jiang, Yan Yan, Peng Zhou und Pengwei Huo. „Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction“. Energy & Environmental Science 15, Nr. 4 (2022): 1556–62. http://dx.doi.org/10.1039/d1ee03764a.
Der volle Inhalt der QuelleLi, Yaxin, Xin Yu, Juan Gao und Yurong Ma. „Hierarchical Ni2P/Zn-Ni-P Nanosheet Array for Efficient Energy-Saving Hydrogen Evolution and Hydrazine Oxidation“. Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta08366c.
Der volle Inhalt der QuelleWang, Zeyu, William A. Goddard und Hai Xiao. „Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides“. Nature Communications 14, Nr. 1 (15.07.2023). http://dx.doi.org/10.1038/s41467-023-40011-8.
Der volle Inhalt der QuelleMaduraiveeran, Govindhan. „Transition metal nanomaterial-based electrocatalysts for water and CO2 electrolysis: preparation, catalytic activity, and prospects“. Frontiers in Energy Research 12 (24.10.2024). http://dx.doi.org/10.3389/fenrg.2024.1433103.
Der volle Inhalt der QuelleChen, Xiaodong, Zhiyuan Zhang, Ya Chen, Runjing Xu, Chunyu Song, Tiefeng Yuan, Wenshuai Tang, Xin Gao, Nannan Wang und Lifeng Cui. „Research advances in earth-abundant-element-based electrocatalysts for oxygen evolution reaction and oxygen reduction reaction“. Energy Materials, 2023. http://dx.doi.org/10.20517/energymater.2023.12.
Der volle Inhalt der Quelle., Krishankant, Aashi Chauhan, Zubair Ahmed, A. Srinivasan, Ashish Gaur, Rajdeep Kaur und Vivek Bagchi. „Nano-interfaced tungsten oxide inwrought with layer double hydroxides for oxygen evolution reaction“. Sustainable Energy & Fuels, 2022. http://dx.doi.org/10.1039/d2se00929c.
Der volle Inhalt der QuelleHuang, Xianggang, Xin Wang, Mengling Zhang, Qilei Jiang, Zheng Qin, Yingxin Liu, Yan Hou, Xueqin Cao und Hongwei Gu. „Manganese- and Selenium-codoping CeO2@Co3O4 Porous Core-shell Nanospheres for Enhanced Oxygen Evolution Reaction“. Energy Advances, 2023. http://dx.doi.org/10.1039/d2ya00315e.
Der volle Inhalt der QuelleAbdollahi, Maliheh, Sara Al Sbei, Miriam A. Rosenbaum und Falk Harnisch. „The oxygen dilemma: The challenge of the anode reaction for microbial electrosynthesis from CO2“. Frontiers in Microbiology 13 (03.08.2022). http://dx.doi.org/10.3389/fmicb.2022.947550.
Der volle Inhalt der QuelleHuang, Shih‐Ching, Hsiang‐Chun Yu, Chun‐Kuo Peng, Yan‐Gu Lin und Chia‐Yu Lin. „P‐Doped NiFe Alloy‐Based Oxygen Evolution Electrocatalyst for Efficient and Stable Seawater Splitting and Organic Electrosynthesis at Neutral pH“. Small, 24.12.2024. https://doi.org/10.1002/smll.202408957.
Der volle Inhalt der QuelleXiao, Zhifei, Haoliang Huang, Sixia Hu, Zhuanglin Weng, Yuping Huang, Bing Du, Xierong Zeng, Yuying Meng und Chuanwei Huang. „Bifunctional Square‐Planar NiO4 Coordination of Topotactic LaNiO2.0 Films for Efficient Oxygen Evolution Reaction“. Small Methods, 27.11.2023. http://dx.doi.org/10.1002/smtd.202300793.
Der volle Inhalt der QuelleDeng, Bohan, Guang-Qiang Yu, Wei Zhao, Yuanzheng Long, Cheng Yang, Peng Du, Xian He et al. „A Self-Circulating Pathway for Oxygen Evolution Reaction“. Energy & Environmental Science, 2023. http://dx.doi.org/10.1039/d3ee02360e.
Der volle Inhalt der QuelleWu, Zhong. „Transition Metal Selenides for Oxygen Evolution Reaction“. Energy Technology, 03.04.2024. http://dx.doi.org/10.1002/ente.202301574.
Der volle Inhalt der QuelleHu, Mengyu, Hanzhi Yu, Chong Chen, Yukun Zhang, Changjiang Hu und Jun Ma. „Gamma-rays induced strong coupling between Ru nanoparticle and cobalt-based metal organic framework nanolayer for methanol oxidation and hydrogen evolution“. New Journal of Chemistry, 2024. http://dx.doi.org/10.1039/d4nj04418e.
Der volle Inhalt der QuelleChen, Ligang, Wei Zhao, Juntao Zhang, Min Liu, Yin Jia, Ruzhi Wang und Maorong Chai. „Recent Research on Iridium‐Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism“. Small, 28.06.2024. http://dx.doi.org/10.1002/smll.202403845.
Der volle Inhalt der Quelle