Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „OER reaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "OER reaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "OER reaction"
Rahman, Sheikh Tareq, Kyong Yop Rhee und Soo-Jin Park. „Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives“. Nanotechnology Reviews 10, Nr. 1 (01.01.2021): 137–57. http://dx.doi.org/10.1515/ntrev-2021-0008.
Der volle Inhalt der QuelleYan, Zhenwei, Shuaihui Guo, Zhaojun Tan, Lijun Wang, Gang Li, Mingqi Tang, Zaiqiang Feng, Xianjie Yuan, Yingjia Wang und Bin Cao. „Research Advances of Non-Noble Metal Catalysts for Oxygen Evolution Reaction in Acid“. Materials 17, Nr. 7 (03.04.2024): 1637. http://dx.doi.org/10.3390/ma17071637.
Der volle Inhalt der QuelleMorales, Dulce M., Mariya A. Kazakova, Maximilian Purcel, Justus Masa und Wolfgang Schuhmann. „The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions“. Journal of Solid State Electrochemistry 24, Nr. 11-12 (01.06.2020): 2901–6. http://dx.doi.org/10.1007/s10008-020-04667-2.
Der volle Inhalt der QuelleHong, Yu-Rim, Sungwook Mhin, Jiseok Kwon, Won-Sik Han, Taeseup Song und HyukSu Han. „Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions“. Royal Society Open Science 5, Nr. 9 (September 2018): 180927. http://dx.doi.org/10.1098/rsos.180927.
Der volle Inhalt der QuelleKim, Yohan, Seongmin Kim, Minyoung Shim, Yusik Oh, Kug-Seung Lee, Yousung Jung und Hye Ryung Byon. „Alteration of Oxygen Evolution Mechanisms in Layered LiCoO2 Structures By Intercalation of Alkali Metal Ions“. ECS Meeting Abstracts MA2022-01, Nr. 34 (07.07.2022): 1356. http://dx.doi.org/10.1149/ma2022-01341356mtgabs.
Der volle Inhalt der QuelleWan, Xin, Yingjie Song, Hua Zhou und Mingfei Shao. „Layered Double Hydroxides for Oxygen Evolution Reaction towards Efficient Hydrogen Generation“. Energy Material Advances 2022 (07.09.2022): 1–17. http://dx.doi.org/10.34133/2022/9842610.
Der volle Inhalt der QuelleFukushima, Tomohiro, Masaki Itatani und Kei Murakoshi. „(Invited) Evaluation of Oxygen Evolution Reaction Electrodes through Machine-Learning Analysis and in-Situ Electrochemical Spectroscopy“. ECS Meeting Abstracts MA2024-02, Nr. 59 (22.11.2024): 4023. https://doi.org/10.1149/ma2024-02594023mtgabs.
Der volle Inhalt der QuelleChae, Sangwoo, Akihito Shio, Tomoya Kishida, Kosuke Furutono, Yumi Kojima, Gasidit Panomsuwan und Takahiro Ishizaki. „Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction“. Materials 17, Nr. 12 (17.06.2024): 2963. http://dx.doi.org/10.3390/ma17122963.
Der volle Inhalt der QuelleLin, Shiru, Haoxiang Xu, Yekun Wang, Xiao Cheng Zeng und Zhongfang Chen. „Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning“. Journal of Materials Chemistry A 8, Nr. 11 (2020): 5663–70. http://dx.doi.org/10.1039/c9ta13404b.
Der volle Inhalt der QuelleWu, Hengbo, Jie Wang, Wei Jin und Zexing Wu. „Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis“. Nanoscale 12, Nr. 36 (2020): 18497–522. http://dx.doi.org/10.1039/d0nr04458j.
Der volle Inhalt der QuelleDissertationen zum Thema "OER reaction"
Chen, Junsheng. „Ternary Metal Oxide/(Oxy)Hydroxide for Efficient Oxygen Evolution Reaction“. Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25536.
Der volle Inhalt der QuelleMamtani, Kuldeep. „Carbon-based Materials for Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER) in Acidic Media“. The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu149376896628355.
Der volle Inhalt der QuelleWu, Qi-Long. „Defect Based Three-Dimensional Hierarchical Porous Carbons for Efficient Oxygen Reduction Reaction“. Thesis, Griffith University, 2022. http://hdl.handle.net/10072/419073.
Der volle Inhalt der QuelleThesis (Masters)
Master of Philosophy (MPhil)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Zou, Yu. „Supported Composite Electrocatalysts for Energy Conversion Applications“. Thesis, Griffith University, 2022. http://hdl.handle.net/10072/417198.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Duan, Yan. „Understanding the oxygen evolution reaction (OER) for Co based transition metal oxides / hydroxides in alkaline electrolytes“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS416.
Der volle Inhalt der QuelleThe development of efficient electrocatalysts to lower the overpotential of oxygen evolution reaction (OER) is of fundamental importance in improving the overall efficiency of fuel production by water electrolysis. Among a plethora of catalysts being studied on, transition metal oxides / hydroxides that exhibit reasonable activity and stability in alkaline electrolyte have been identified as catalysts to potentially overpass the activity of expensive Ir- and Ru- based oxides. Understanding the OER for transition metal oxides / hydroxides in alkaline electrolytes paves the way for better design of low cost and highly efficient electrocatalysts. This dissertation, with three different work on Co-based oxides / hydroxides, studies and deepens the understanding of the bulk properties, surface properties of materials and interfacial properties on OER. Firstly, with Fe substitution, it addresses tuning the eg configuration of metal cations in LaCoO3 where adjusting the metal 3d oxygen 2p covalency can bring benefits to the OER performance. Secondly, with Ni substitution in ZnCo2O4, it demonstrates a change in relative position of O p-band and MOh d-band centre which induces a change in stability as well as the possibility for lattice oxygen to participate in the OER. Finally, with La1-xSrxCoO3 series, CoOOH and Fe-containing CoOOH as examples, the impact of the electrolyte has been explored by the study of reaction kinetics parameters. With a better understanding of how material properties and dynamic environment influence the OER activity and mechanism, we can obtain more efficient OER catalysts for better energy infrastructure
Stevens, Michaela. „Fundamentals and Industrial Applications: Understanding First Row Transition Metal (Oxy)Hydroxides as Oxygen Evolution Reaction Catalysts“. Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22633.
Der volle Inhalt der Quelle10000-01-01
Al-Mamun, Mohammad. „Rational Design of Nanostructured Earth-Abundant Electrocatalysts for Energy Conversion Applications“. Thesis, Griffith University, 2016. http://hdl.handle.net/10072/365651.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Bernicke, Michael [Verfasser], Ralph [Akademischer Betreuer] Krähnert, Peter [Gutachter] Strasser und Michael [Gutachter] Bron. „Mesoporous oxides as efficient catalysts for the electrocatalytic oxygen evolution reaction (OER) / Michael Bernicke ; Gutachter: Peter Strasser, Michael Bron ; Betreuer: Ralph Krähnert“. Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156010195/34.
Der volle Inhalt der QuelleTerry, Alexandre. „New mixed 3d metal-based oxyfluorinated materials as anodic catalysts for water splitting : from elaboration to mechanistic study“. Electronic Thesis or Diss., Le Mans, 2024. https://cyberdoc-int.univ-lemans.fr/Theses/2024/2024LEMA1029.pdf.
Der volle Inhalt der QuelleIf hydrogen is a promising energy vector for sustainable energy storage, its production must rely on carbon-free technologies. Water splitting powered by green electricity is ideal for producing a decarbonized energy carrier from water. However, this process is hampered by the sluggish kinetics of the oxidation evolution reaction (OER, 2H2O ⇋ O2 + 4H+ + 4e-) at the anode, requiring extra energy to ensure a suitable production rate. Catalysts, usually iridium and ruthenium oxides, are employed to reduce the energy requirement by facilitating electron and proton transfer involved in OER, but these metals are scarce, limiting the scalability of this technology. To overcome this, oxides and oxyhydroxides catalysts based on cost-effective and abundant 3d transition metal-based have been developed for alkaline water splitting, presenting high performance. In this way, this work presents the synthesis of new oxyfluorides with eco-compatible and affordable elements using a simple and straightforward two-step synthetic route for application as OER electrocatalyst in alkaline electrolyte.The initial study focuses on iron-enriched oxyfluoride catalysts from thermal decomposition under ambient air of (Co1-xFex)2+Fe3+F5(H2O)7 (0 ≤ x ≤ 0.72). Results show that cobalt content can be reduced by 20% without affecting OER performance, achieving an overpotential of 320 mV at 10 mA.cm-2, a mass activity of 110 A.g-1 at 1.55 V vs. RHE and high stability. The second part aims to enhanced the catalytic properties of Co0.5Fe0.5O0.5F1.5 reference by substituting cobalt with nickel, known for its OER activity. The (Co(1-x)/2Nix/2)2+Fe0.5O0.5F1.5-y(OH)y (y ≤ 0.3) solid solution have been obtained by thermal decomposition (Co1-xNix)2+FeF5(H2O)7 (0 ≤ x ≤ 1). The final section assesses the performance of these materials and studies their reaction mechanism. The x = 0.5 composition shows the best performance, with a low overpotential of 290 mV at 10 mA.cm-2 and a specific activity of 3.9 A.m-2 of BET surface area at 1.5 V vs. RHE. The origin of the exceptional catalytic properties of (Co0.25Ni0.25)2+Fe3+0.5O0.5F1.3(OH)0.2, highlighted via in-situ/operando analyses, among others, were employed, would stem from the synergy between Co and Ni, and the involvement of lattice oxygens in the mechanism (LOM), circumventing the theoretical limits linked to the conventional mechanism
Kumar, Kavita. „Catalyseurs sans métaux nobles pour pile à combustible régénérative“. Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2284/document.
Der volle Inhalt der QuelleHydrogen, as an environmentally friendly future energy vector, is a non-toxic and convenient molecule for regenerative fuel cell, which connects two different technologies: an electrolyzer for H2 production, and a fuel cell for its direct conversion to electric energy. This kind of system possesses many advantages, such as lightness, compactness and more autonomy. However, improvement of activity and durability of electrode materials free from noble metals in their composition is needed. Thereby, bifunctional catalysts composed of transition metals deposited onto graphene-based materials were synthesized. The interaction between the metal atom of the oxide and the graphene doped heteroatom in the Co3O4/NRGO catalyst was investigated physicochemically. With a low cobalt loading, the interaction between cobalt and nitrogen was characterized by cyclic voltammetry, which revealed that it was responsible for decreasing the oxide nanoparticle size, as well as increasing the material activity towards the oxygen reduction reaction (ORR). The substitution of Co by Ni in the spinel structure (NiCo2O4/RGO) obtained by solvothermal synthesis, allowed the enhancement of the electrocatalytic performances towards the ORR and OER. Moreover, this catalyst as well as another material prepared in collaborative program with a lab from Technical University of Berlin were used as cathode in preliminary studies undertaken on solid alkaline fuel cell (SAFC)
Bücher zum Thema "OER reaction"
Kerekes, Amália. Mehr oder Weininger: Eine Textoffensive aus Österreich/Ungarn. Wien: Braumüller, 2005.
Den vollen Inhalt der Quelle findenFattahi, Mir Taher. Emil Abderhalden (1877-1950), die Abwehrfermente: Ein langer Irrweg oder wissenschaftlicher Betrug? Berlin: Uni-Edition, 2006.
Den vollen Inhalt der Quelle findenIssel, Wolfgang. Die Wiederaurarbeitung von bestrahlten Kernbrennstoffen in der Bundesrepublik Deutschland: Technologische Chance oder energiepolitischer Zwang. Frankfurt am Main: P. Lang, 2003.
Den vollen Inhalt der Quelle findenHenriksen, Niels Engholm, und Flemming Yssing Hansen. Bimolecular Reactions, Dynamics of Collisions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.003.0004.
Der volle Inhalt der QuelleWiffen, Philip, Marc Mitchell, Melanie Snelling und Nicola Stoner. Adverse drug reactions and drug interactions. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198735823.003.0002.
Der volle Inhalt der QuelleHenriksen, Niels Engholm, und Flemming Yssing Hansen. From Microscopic to Macroscopic Descriptions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.003.0002.
Der volle Inhalt der QuelleFerner, Robin, und Anthony Cox. Drug-induced neurological disease. Herausgegeben von Patrick Davey und David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0240.
Der volle Inhalt der QuelleMisbah, Siraj. Suspected anaphylaxis. Herausgegeben von Patrick Davey und David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0075.
Der volle Inhalt der QuelleHenriksen, Niels E., und Flemming Y. Hansen. Theories of Molecular Reaction Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.001.0001.
Der volle Inhalt der QuelleRoss, John, Igor Schreiber und Marcel O. Vlad. Determination of Complex Reaction Mechanisms. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195178685.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "OER reaction"
Bi, Songhu, Zhen Geng, Liming Jin, Mingzhe Xue und Cunman Zhang. „Porous Heterogeneous Sulfide Nickel/Nickel Iron Alloy Catalysts for Oxygen Evolution Reaction of Alkaline Water Electrolysis at High Current Density“. In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 116–21. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_13.
Der volle Inhalt der QuelleDeng, Jiayao, Xiao Hu, Gnauizhi Xu, Zhanfeng Deng, Lan Yang, Ding Chen, Ming Zhou und Boyuan Tian. „The Preparation of Iridium-Based Catalyst with Different Melting Point-Metal Nitrate and Its OER Performance in Acid Media“. In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 61–68. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_6.
Der volle Inhalt der QuelleBell, Alexis T. „Chapter 3. Understanding the Effects of Composition and Structure on the Oxygen Evolution Reaction (OER) Occurring on NiFeOx Catalysts“. In Energy and Environment Series, 79–116. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010313-00079.
Der volle Inhalt der QuelleAndronov, Mikhail, Natalia Andronova, Michael Wand, Jürgen Schmidhuber und Djork-Arné Clevert. „Curating Reagents in Chemical Reaction Data with an Interactive Reagent Space Map“. In Lecture Notes in Computer Science, 21–35. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72381-0_3.
Der volle Inhalt der QuelleCao, Dong, Mengyao Ma und Peng Gao. „Trifunctional Electrocatalysts for the Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), and Oxygen Reduction Reaction (ORR)“. In Multi-functional Electrocatalysts, 407–33. Royal Society of Chemistry, 2024. http://dx.doi.org/10.1039/9781837674497-00407.
Der volle Inhalt der QuelleKhrizanforova, Vera V., und Yulia H. Budnikova. „MOFs and their Derived Structures for Multifunctional Electrocatalysis“. In Advanced Catalysts Based on Metal-organic Frameworks (Part 2), 162–91. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815136029123010007.
Der volle Inhalt der QuelleThomassen, Magnus, und Svein Sunde. „Electrocatalysts for Oxygen Evolution Reaction (OER)“. In PEM Electrolysis for Hydrogen Production, 35–64. CRC Press, 2015. http://dx.doi.org/10.1201/b19096-4.
Der volle Inhalt der Quelle„Electrocatalysts for Oxygen Evolution Reaction (OER)“. In PEM Electrolysis for Hydrogen Production, 47–76. CRC Press, 2016. http://dx.doi.org/10.1201/b19096-7.
Der volle Inhalt der QuellePataniya, Pratik M., Ayushi Shah, Pooja Sharma und C. K. Sumesh. „Trifunctional Electrocatalysts for the Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), and Urea Oxidation Reaction (UOR)“. In Multi-functional Electrocatalysts, 434–69. Royal Society of Chemistry, 2024. http://dx.doi.org/10.1039/9781837674497-00434.
Der volle Inhalt der QuelleSingha, Debal Kanti, Tapan Ping, Biswajit Nayak, Smruti Vardhan Purohit und Bikash Kumar Jena. „Metal–Organic Framework-derived Bifunctional Electrocatalysts“. In Multi-functional Electrocatalysts, 226–65. Royal Society of Chemistry, 2024. http://dx.doi.org/10.1039/9781837674497-00226.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "OER reaction"
Hameed, Areeba, Khulood Logade, Naba Ali, Priya Ghosh, Sadiya Shafath, Sumaiya Salim, Anchu Ashok, Anand Kumar und Mohd Ali H. Saleh Saad. „Highly active Bifunctional Lamo3 (M=Cr, Mn, Fe, Co, Ni) Perovskites for Oxygen Reduction and Oxygen Evolution Reaction in Alkaline Media“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0106.
Der volle Inhalt der QuellePanigrahy, Bharati, B. Ramachandra Rao und Vipul Kumar Maheshwari. „Development and Demonstration of In-House Design Green Hydrogen Production Technologies with Reduced CAPEX and OPEX“. In ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/222255-ms.
Der volle Inhalt der QuelleMotyka, Elaine, Erin Volpe, Stefan Roeseler, Ryan Plessinger, Tyler Noyes, Chenyu Li, Habin Park, Paul Kohl, William Mustain und Jonathan Kweder. „The Effect of FELTMETAL™ Porous Transport Layer Structure on Performance of Anion Exchange Membrane Water Electrolyzers“. In ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/gt2024-129232.
Der volle Inhalt der QuelleMohammed, Habiba, Zainab Muhammad Shuaibu, Binta Asabe Muhammad, Bello Aminu Aminu und Maryam Albashir. „Assessment of Teacher Network for Girls Education (TEN-G) Project in Kaduna State, Nigeri“. In Tenth Pan-Commonwealth Forum on Open Learning. Commonwealth of Learning, 2022. http://dx.doi.org/10.56059/pcf10.2671.
Der volle Inhalt der QuelleAhsan, Syed Saad, und David Erickson. „Microfluidic Photocatalytic Water-Splitting Reactors“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87860.
Der volle Inhalt der QuelleMatsumura, Yukihiko, Go Tsujimoto und Takuro Konishi. „Determination of Heat of Reaction in Supercritical Water“. In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44073.
Der volle Inhalt der QuelleGokulakrishnan, P., S. Kwon, A. J. Hamer, M. S. Klassen und R. J. Roby. „Reduced Kinetic Mechanism for Reactive Flow Simulation of Syngas/Methane Combustion at Gas Turbine Conditions“. In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90573.
Der volle Inhalt der QuelleDu, T. Z., Chun-Ho Liu und Y. B. Zhao. „Large-Eddy Simulation of Reactive Pollutant Dispersion Over Street Canyons of Different Aspect Ratios“. In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21252.
Der volle Inhalt der QuelleSchaffer, W. M., und T. V. Bronnikova. „Modeling Peroxidase-Oxidase Interactions“. In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-5946.
Der volle Inhalt der QuelleLe Cong, Tanh, und Philippe Dagaut. „Kinetics of Natural Gas, Natural Gas/Syngas Mixtures Oxidation and Effect of Burnt Gas Recirculation: Experimental and Detailed Modeling“. In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27146.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "OER reaction"
Knibb, Rebecca, Lily Hawkins und Dan Rigby. Food Sensitive Study: Wave Two Survey. Food Standards Agency, September 2022. http://dx.doi.org/10.46756/sci.fsa.nyx192.
Der volle Inhalt der QuelleDong, Yi, LiJia Liu, Jianing Liu, Tianqi Liao, Jieru Zhou und Huaien Bu. Incidences of Adverse Reactions in BNT162b2: A Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Januar 2022. http://dx.doi.org/10.37766/inplasy2022.1.0043.
Der volle Inhalt der QuelleSmith, Donald L. Observations on the Effects of 252Cf Spontaneous-Fission Neutron Spectrum Uncertainties on Uncertainties in Calculated Spectrum-Average Cross Sections for Reactions in the Neutron Dosimetry Library IRDFF-II. IAEA Nuclear Data Section, November 2022. http://dx.doi.org/10.61092/iaea.wx80-dm11.
Der volle Inhalt der QuelleAhlquist, J. T., und N. N. Watkins. Modeling Continuous-Flow Reactor Improvements over Batch Reactions for Enzyme Catalyzed Microsphere Surface Reactions. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1568027.
Der volle Inhalt der QuelleBordalo, Pedro, Nicola Gennaioli, Yueran Ma und Andrei Shleifer. Over-reaction in Macroeconomic Expectations. Cambridge, MA: National Bureau of Economic Research, August 2018. http://dx.doi.org/10.3386/w24932.
Der volle Inhalt der QuelleSyvash, Kateryna. AUDIENCE FEEDBACK AS AN ELEMENT OF PARASOCIAL COMMUNICATION WITH SCREEN MEDIA-PERSONS. Ivan Franko National University of Lviv, Februar 2021. http://dx.doi.org/10.30970/vjo.2021.49.11062.
Der volle Inhalt der Quelleda Silveira, Rava Azeredo, und Michael Woodford. Noisy Memory and Over-Reaction to News. Cambridge, MA: National Bureau of Economic Research, Januar 2019. http://dx.doi.org/10.3386/w25478.
Der volle Inhalt der QuelleKanner, Joseph, Mark Richards, Ron Kohen und Reed Jess. Improvement of quality and nutritional value of muscle foods. United States Department of Agriculture, Dezember 2008. http://dx.doi.org/10.32747/2008.7591735.bard.
Der volle Inhalt der QuellePanizza, Ugo, und Dany Jaimovich. Procyclicality or Reverse Causality? Inter-American Development Bank, März 2007. http://dx.doi.org/10.18235/0010973.
Der volle Inhalt der QuelleFerreira, Clodomiro, und Stefano Pica. Households’ subjective expectations: disagreement, common drivers and reaction to monetary policy. Madrid: Banco de España, November 2024. http://dx.doi.org/10.53479/38316.
Der volle Inhalt der Quelle