Zeitschriftenartikel zum Thema „Odometry estimation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Odometry estimation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Nurmaini, Siti, und Sahat Pangidoan. „Localization of Leader-Follower Robot Using Extended Kalman Filter“. Computer Engineering and Applications Journal 7, Nr. 2 (12.07.2018): 95–108. http://dx.doi.org/10.18495/comengapp.v7i2.253.
Der volle Inhalt der QuelleLi, Q., C. Wang, S. Chen, X. Li, C. Wen, M. Cheng und J. Li. „DEEP LIDAR ODOMETRY“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13 (05.06.2019): 1681–86. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w13-1681-2019.
Der volle Inhalt der QuelleMartínez-García, Edgar Alonso, Joaquín Rivero-Juárez, Luz Abril Torres-Méndez und Jorge Enrique Rodas-Osollo. „Divergent trinocular vision observers design for extended Kalman filter robot state estimation“. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 233, Nr. 5 (24.09.2018): 524–47. http://dx.doi.org/10.1177/0959651818800908.
Der volle Inhalt der QuelleWu, Qin Fan, Qing Li und Nong Cheng. „Visual Odometry and 3D Mapping in Indoor Environments“. Applied Mechanics and Materials 336-338 (Juli 2013): 348–54. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.348.
Der volle Inhalt der QuelleJiménez, Paulo A., und Bijan Shirinzadeh. „Laser interferometry measurements based calibration and error propagation identification for pose estimation in mobile robots“. Robotica 32, Nr. 1 (06.08.2013): 165–74. http://dx.doi.org/10.1017/s0263574713000660.
Der volle Inhalt der QuelleGonzalez, Ramon, Francisco Rodriguez, Jose Luis Guzman, Cedric Pradalier und Roland Siegwart. „Combined visual odometry and visual compass for off-road mobile robots localization“. Robotica 30, Nr. 6 (05.10.2011): 865–78. http://dx.doi.org/10.1017/s026357471100110x.
Der volle Inhalt der QuelleValiente García, David, Lorenzo Fernández Rojo, Arturo Gil Aparicio, Luis Payá Castelló und Oscar Reinoso García. „Visual Odometry through Appearance- and Feature-Based Method with Omnidirectional Images“. Journal of Robotics 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/797063.
Der volle Inhalt der QuelleJung, Changbae, und Woojin Chung. „Calibration of Kinematic Parameters for Two Wheel Differential Mobile Robots by Using Experimental Heading Errors“. International Journal of Advanced Robotic Systems 8, Nr. 5 (01.01.2011): 68. http://dx.doi.org/10.5772/50906.
Der volle Inhalt der QuelleThapa, Vikas, Abhishek Sharma, Beena Gairola, Amit K. Mondal, Vindhya Devalla und Ravi K. Patel. „A Review on Visual Odometry Techniques for Mobile Robots: Types and Challenges“. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 13, Nr. 5 (22.09.2020): 618–31. http://dx.doi.org/10.2174/2352096512666191004142546.
Der volle Inhalt der QuelleLee, Kyuman, und Eric N. Johnson. „Latency Compensated Visual-Inertial Odometry for Agile Autonomous Flight“. Sensors 20, Nr. 8 (14.04.2020): 2209. http://dx.doi.org/10.3390/s20082209.
Der volle Inhalt der QuelleSalameh, Mohammed, Azizi Abdullah und Shahnorbanun Sahran. „Multiple Descriptors for Visual Odometry Trajectory Estimation“. International Journal on Advanced Science, Engineering and Information Technology 8, Nr. 4-2 (26.09.2018): 1423. http://dx.doi.org/10.18517/ijaseit.8.4-2.6834.
Der volle Inhalt der QuelleRamezani, Milad, Kourosh Khoshelham und Clive Fraser. „Pose estimation by Omnidirectional Visual-Inertial Odometry“. Robotics and Autonomous Systems 105 (Juli 2018): 26–37. http://dx.doi.org/10.1016/j.robot.2018.03.007.
Der volle Inhalt der QuelleCostante, Gabriele, und Michele Mancini. „Uncertainty Estimation for Data-Driven Visual Odometry“. IEEE Transactions on Robotics 36, Nr. 6 (Dezember 2020): 1738–57. http://dx.doi.org/10.1109/tro.2020.3001674.
Der volle Inhalt der QuelleTeixeira, Bernardo, Hugo Silva, Anibal Matos und Eduardo Silva. „Deep Learning for Underwater Visual Odometry Estimation“. IEEE Access 8 (2020): 44687–701. http://dx.doi.org/10.1109/access.2020.2978406.
Der volle Inhalt der QuelleAn, Lifeng, Xinyu Zhang, Hongbo Gao und Yuchao Liu. „Semantic segmentation–aided visual odometry for urban autonomous driving“. International Journal of Advanced Robotic Systems 14, Nr. 5 (01.09.2017): 172988141773566. http://dx.doi.org/10.1177/1729881417735667.
Der volle Inhalt der QuelleAguiar, André, Filipe Santos, Armando Jorge Sousa und Luís Santos. „FAST-FUSION: An Improved Accuracy Omnidirectional Visual Odometry System with Sensor Fusion and GPU Optimization for Embedded Low Cost Hardware“. Applied Sciences 9, Nr. 24 (15.12.2019): 5516. http://dx.doi.org/10.3390/app9245516.
Der volle Inhalt der QuelleConduraru, Ionel, Ioan Doroftei, Dorin Luca und Alina Conduraru Slatineanu. „Odometry Aspects of an Omni-Directional Mobile Robot with Modified Mecanum Wheels“. Applied Mechanics and Materials 658 (Oktober 2014): 587–92. http://dx.doi.org/10.4028/www.scientific.net/amm.658.587.
Der volle Inhalt der QuelleFazekas, Máté, Péter Gáspár und Balázs Németh. „Velocity Estimation via Wheel Circumference Identification“. Periodica Polytechnica Transportation Engineering 49, Nr. 3 (01.09.2021): 250–60. http://dx.doi.org/10.3311/pptr.18623.
Der volle Inhalt der QuelleBoukhers, Zeyd, Kimiaki Shirahama und Marcin Grzegorzek. „Less restrictive camera odometry estimation from monocular camera“. Multimedia Tools and Applications 77, Nr. 13 (27.09.2017): 16199–222. http://dx.doi.org/10.1007/s11042-017-5195-7.
Der volle Inhalt der Quellede Saxe, Christopher, und David Cebon. „Estimation of trailer off-tracking using visual odometry“. Vehicle System Dynamics 57, Nr. 5 (18.06.2018): 752–76. http://dx.doi.org/10.1080/00423114.2018.1484498.
Der volle Inhalt der QuelleParra, I., M. A. Sotelo, D. F. Llorca und M. Ocaña. „Robust visual odometry for vehicle localization in urban environments“. Robotica 28, Nr. 3 (22.05.2009): 441–52. http://dx.doi.org/10.1017/s026357470900575x.
Der volle Inhalt der QuelleFazekas, Máté, Péter Gáspár und Balázs Németh. „Calibration and Improvement of an Odometry Model with Dynamic Wheel and Lateral Dynamics Integration“. Sensors 21, Nr. 2 (06.01.2021): 337. http://dx.doi.org/10.3390/s21020337.
Der volle Inhalt der QuelleYoon, Sung-Joo, und Taejung Kim. „Development of Stereo Visual Odometry Based on Photogrammetric Feature Optimization“. Remote Sensing 11, Nr. 1 (01.01.2019): 67. http://dx.doi.org/10.3390/rs11010067.
Der volle Inhalt der QuelleEsfandiari, Hooman, Derek Lichti und Carolyn Anglin. „Single-camera visual odometry to track a surgical X-ray C-arm base“. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 231, Nr. 12 (17.10.2017): 1140–51. http://dx.doi.org/10.1177/0954411917735556.
Der volle Inhalt der QuelleHong, Euntae, und Jongwoo Lim. „Visual-Inertial Odometry with Robust Initialization and Online Scale Estimation“. Sensors 18, Nr. 12 (05.12.2018): 4287. http://dx.doi.org/10.3390/s18124287.
Der volle Inhalt der QuelleAladem, Mohamed, und Samir Rawashdeh. „Lightweight Visual Odometry for Autonomous Mobile Robots“. Sensors 18, Nr. 9 (28.08.2018): 2837. http://dx.doi.org/10.3390/s18092837.
Der volle Inhalt der QuelleJavanmard-Gh., A., D. Iwaszczuk und S. Roth. „DEEPLIO: DEEP LIDAR INERTIAL SENSOR FUSION FOR ODOMETRY ESTIMATION“. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-1-2021 (17.06.2021): 47–54. http://dx.doi.org/10.5194/isprs-annals-v-1-2021-47-2021.
Der volle Inhalt der QuelleHan, Chenlei, Michael Frey und Frank Gauterin. „Modular Approach for Odometry Localization Method for Vehicles with Increased Maneuverability“. Sensors 21, Nr. 1 (25.12.2020): 79. http://dx.doi.org/10.3390/s21010079.
Der volle Inhalt der QuelleXu, Bo, Yu Chen, Shoujian Zhang und Jingrong Wang. „Improved Point–Line Visual–Inertial Odometry System Using Helmert Variance Component Estimation“. Remote Sensing 12, Nr. 18 (07.09.2020): 2901. http://dx.doi.org/10.3390/rs12182901.
Der volle Inhalt der QuelleZhang, Chaofan, Yong Liu, Fan Wang, Yingwei Xia und Wen Zhang. „VINS-MKF: A Tightly-Coupled Multi-Keyframe Visual-Inertial Odometry for Accurate and Robust State Estimation“. Sensors 18, Nr. 11 (19.11.2018): 4036. http://dx.doi.org/10.3390/s18114036.
Der volle Inhalt der QuelleBag, Suvam, Vishwas Venkatachalapathy und RaymondW Ptucha. „Motion Estimation Using Visual Odometry and Deep Learning Localization“. Electronic Imaging 2017, Nr. 19 (29.01.2017): 62–69. http://dx.doi.org/10.2352/issn.2470-1173.2017.19.avm-022.
Der volle Inhalt der QuelleAbdu, Ahmed, Hakim A. Abdo und Al-Alimi Dalal. „Robust Monocular Visual Odometry Trajectory Estimation in Urban Environments“. International Journal of Information Technology and Computer Science 11, Nr. 10 (08.10.2019): 12–18. http://dx.doi.org/10.5815/ijitcs.2019.10.02.
Der volle Inhalt der QuelleLin, Lili, Weisheng Wang, Wan Luo, Lesheng Song und Wenhui Zhou. „Unsupervised monocular visual odometry with decoupled camera pose estimation“. Digital Signal Processing 114 (Juli 2021): 103052. http://dx.doi.org/10.1016/j.dsp.2021.103052.
Der volle Inhalt der QuelleLiu, Qiang, Haidong Zhang, Yiming Xu und Li Wang. „Unsupervised Deep Learning-Based RGB-D Visual Odometry“. Applied Sciences 10, Nr. 16 (06.08.2020): 5426. http://dx.doi.org/10.3390/app10165426.
Der volle Inhalt der QuelleLiu, Fei, Yashar Balazadegan Sarvrood und Yang Gao. „Implementation and Analysis of Tightly Integrated INS/Stereo VO for Land Vehicle Navigation“. Journal of Navigation 71, Nr. 1 (23.08.2017): 83–99. http://dx.doi.org/10.1017/s037346331700056x.
Der volle Inhalt der QuelleBoulekchour, Mohammed, Nabil Aouf und Mark Richardson. „Robust L∞convex optimisation for monocular visual odometry trajectory estimation“. Robotica 34, Nr. 3 (09.07.2014): 703–22. http://dx.doi.org/10.1017/s0263574714001829.
Der volle Inhalt der QuelleKersten, J., und V. Rodehorst. „ENHANCEMENT STRATEGIES FOR FRAME-TO-FRAME UAS STEREO VISUAL ODOMETRY“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B3 (09.06.2016): 511–18. http://dx.doi.org/10.5194/isprsarchives-xli-b3-511-2016.
Der volle Inhalt der QuelleKersten, J., und V. Rodehorst. „ENHANCEMENT STRATEGIES FOR FRAME-TO-FRAME UAS STEREO VISUAL ODOMETRY“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B3 (09.06.2016): 511–18. http://dx.doi.org/10.5194/isprs-archives-xli-b3-511-2016.
Der volle Inhalt der QuelleYuan, Cheng, Jizhou Lai, Pin Lyu, Peng Shi, Wei Zhao und Kai Huang. „A Novel Fault-Tolerant Navigation and Positioning Method with Stereo-Camera/Micro Electro Mechanical Systems Inertial Measurement Unit (MEMS-IMU) in Hostile Environment“. Micromachines 9, Nr. 12 (27.11.2018): 626. http://dx.doi.org/10.3390/mi9120626.
Der volle Inhalt der QuelleYoon, S. J., W. S. Yoon, J. W. Jung und T. Kim. „DEVELOPMENT OF A SINGLE-VIEW ODOMETER BASED ON PHOTOGRAMMETRIC BUNDLE ADJUSTMENT“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2 (30.05.2018): 1219–23. http://dx.doi.org/10.5194/isprs-archives-xlii-2-1219-2018.
Der volle Inhalt der QuelleJeong, Jae Heon, und Nikolaus Correll. „Towards Real-Time Trinocular Visual Odometry“. Applied Mechanics and Materials 490-491 (Januar 2014): 1424–29. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.1424.
Der volle Inhalt der QuelleMa, Fangwu, Jinzhu Shi, Yu Yang, Jinhang Li und Kai Dai. „ACK-MSCKF: Tightly-Coupled Ackermann Multi-State Constraint Kalman Filter for Autonomous Vehicle Localization“. Sensors 19, Nr. 21 (05.11.2019): 4816. http://dx.doi.org/10.3390/s19214816.
Der volle Inhalt der QuelleKim, Joo-Hee, und In-Cheol Kim. „Robust Real-Time Visual Odometry Estimation for 3D Scene Reconstruction“. KIPS Transactions on Software and Data Engineering 4, Nr. 4 (30.04.2015): 187–94. http://dx.doi.org/10.3745/ktsde.2015.4.4.187.
Der volle Inhalt der QuelleMeng, Xuyang, Chunxiao Fan, Yue Ming, Yuan Shen und Hui Yu. „Un-VDNet: unsupervised network for visual odometry and depth estimation“. Journal of Electronic Imaging 28, Nr. 06 (26.12.2019): 1. http://dx.doi.org/10.1117/1.jei.28.6.063015.
Der volle Inhalt der QuelleZhou, Dingfu, Yuchao Dai und Hongdong Li. „Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry“. IEEE Transactions on Intelligent Transportation Systems 21, Nr. 2 (Februar 2020): 791–802. http://dx.doi.org/10.1109/tits.2019.2900330.
Der volle Inhalt der QuelleYang, Xiaohan, Xiaojuan Li, Yong Guan, Jiadong Song und Rui Wang. „Overfitting reduction of pose estimation for deep learning visual odometry“. China Communications 17, Nr. 6 (Juni 2020): 196–210. http://dx.doi.org/10.23919/jcc.2020.06.016.
Der volle Inhalt der QuelleAqel, Mohammad O. A., Mohammad H. Marhaban, M. Iqbal Saripan und Napsiah Bt Ismail. „Estimation of image scale variations in monocular visual odometry systems“. IEEJ Transactions on Electrical and Electronic Engineering 12, Nr. 2 (15.12.2016): 228–43. http://dx.doi.org/10.1002/tee.22370.
Der volle Inhalt der QuelleNisar, Barza, Philipp Foehn, Davide Falanga und Davide Scaramuzza. „VIMO: Simultaneous Visual Inertial Model-Based Odometry and Force Estimation“. IEEE Robotics and Automation Letters 4, Nr. 3 (Juli 2019): 2785–92. http://dx.doi.org/10.1109/lra.2019.2918689.
Der volle Inhalt der QuelleNguyen, Thien Hoang, Thien-Minh Nguyen, Muqing Cao und Lihua Xie. „Loosely-Coupled Ultra-wideband-Aided Scale Correction for Monocular Visual Odometry“. Unmanned Systems 08, Nr. 02 (17.03.2020): 179–90. http://dx.doi.org/10.1142/s2301385020500119.
Der volle Inhalt der QuelleKučić, Mario, und Marko Valčić. „Stereo Visual Odometry for Indoor Localization of Ship Model“. Journal of Maritime & Transportation Science 58, Nr. 1 (Juni 2020): 57–75. http://dx.doi.org/10.18048/2020.58.04.
Der volle Inhalt der Quelle