Dissertationen zum Thema „Odometry estimation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-25 Dissertationen für die Forschung zum Thema "Odometry estimation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Masson, Clément. „Direction estimation using visual odometry“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-169377.
Der volle Inhalt der QuelleDetta masterarbete behandlar problemet med att mäta objekts riktningar från en fastobservationspunkt. En ny metod föreslås, baserad på en enda roterande kamera som kräverendast två (eller flera) landmärkens riktningar. I en första fas används multiperspektivgeometri,för att uppskatta kamerarotationer och nyckelelements riktningar utifrån en uppsättningöverlappande bilder. I en andra fas kan sedan riktningen hos vilket objekt som helst uppskattasgenom att kameran, associerad till en bild visande detta objekt, omsektioneras. En detaljeradbeskrivning av den algoritmiska kedjan ges, tillsammans med testresultat av både syntetisk dataoch verkliga bilder tagen med en infraröd kamera.
Holmqvist, Niclas. „HANDHELD LIDAR ODOMETRY ESTIMATION AND MAPPING SYSTEM“. Thesis, Mälardalens högskola, Inbyggda system, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-41137.
Der volle Inhalt der QuelleCHEN, HONGYI. „GPS-oscillation-robust Localization and Visionaided Odometry Estimation“. Thesis, KTH, Maskinkonstruktion (Inst.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-247299.
Der volle Inhalt der QuelleGPS/IMU integrerade system används ofta för navigering av fordon. Algoritmen för detta kopplade system är normalt baserat på ett Kalmanfilter. Ett problem med systemet är att oscillerade GPS mätningar i stadsmiljöer enkelt kan leda till en lokaliseringsdivergens. Dessutom kan riktningsuppskattningen vara känslig för magnetiska störningar om den är beroende av en IMU med integrerad magnetometer. Rapporten försöker lösa lokaliseringsproblemet som skapas av GPS-oscillationer och avbrott med hjälp av ett adaptivt förlängt Kalmanfilter (AEKF). När det gäller riktningsuppskattningen används stereovisuell odometri (VO) för att försvaga effekten av magnetiska störningar genom sensorfusion. En Visionsstödd AEKF-baserad algoritm testas i fall med både goda GPS omständigheter och med oscillationer i GPS mätningar med magnetiska störningar. Under de fallen som är aktuella är algoritmen verifierad för att överträffa det konventionella utökade Kalmanfilteret (CEKF) och ”Unscented Kalman filter” (UKF) när det kommer till positionsuppskattning med 53,74% respektive 40,09% samt minska fel i riktningsuppskattningen.
Rao, Anantha N. „Learning-based Visual Odometry - A Transformer Approach“. University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627658636420617.
Der volle Inhalt der QuelleAwang, Salleh Dayang Nur Salmi Dharmiza. „Study of vehicle localization optimization with visual odometry trajectory tracking“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS601.
Der volle Inhalt der QuelleWith the growing research on Advanced Driver Assistance Systems (ADAS) for Intelligent Transport Systems (ITS), accurate vehicle localization plays an important role in intelligent vehicles. The Global Positioning System (GPS) has been widely used but its accuracy deteriorates and susceptible to positioning error due to factors such as the restricting environments that results in signal weakening. This problem can be addressed by integrating the GPS data with additional information from other sensors. Meanwhile, nowadays, we can find vehicles equipped with sensors for ADAS applications. In this research, fusion of GPS with visual odometry (VO) and digital map is proposed as a solution to localization improvement with low-cost data fusion. From the published works on VO, it is interesting to know how the generated trajectory can further improve vehicle localization. By integrating the VO output with GPS and OpenStreetMap (OSM) data, estimates of vehicle position on the map can be obtained. The lateral positioning error is reduced by utilizing lane distribution information provided by OSM while the longitudinal positioning is optimized with curve matching between VO trajectory trail and segmented roads. To observe the system robustness, the method was validated with KITTI datasets tested with different common GPS noise. Several published VO methods were also used to compare improvement level after data fusion. Validation results show that the positioning accuracy achieved significant improvement especially for the longitudinal error with curve matching technique. The localization performance is on par with Simultaneous Localization and Mapping (SLAM) SLAM techniques despite the drift in VO trajectory input. The research on employability of VO trajectory is extended for a deterministic task in lane-change detection. This is to assist the routing service for lane-level direction in navigation. The lane-change detection was conducted by CUSUM and curve fitting technique that resulted in 100% successful detection for stereo VO. Further study for the detection strategy is however required to obtain the current true lane of the vehicle for lane-level accurate localization. With the results obtained from the proposed low-cost data fusion for localization, we see a bright prospect of utilizing VO trajectory with information from OSM to improve the performance. In addition to obtain VO trajectory, the camera mounted on the vehicle can also be used for other image processing applications to complement the system. This research will continue to develop with future works concluded in the last chapter of this thesis
Ay, Emre. „Ego-Motion Estimation of Drones“. Thesis, KTH, Robotik, perception och lärande, RPL, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210772.
Der volle Inhalt der QuelleFör att avlägsna behovet av extern infrastruktur så som GPS, som dessutominte är tillgänglig i många miljöer, är det önskvärt att uppskatta en drönares rörelse med sensor ombord. Visuella positioneringssystem har studerats under lång tid och litteraturen på området är ymnig. Syftet med detta projekt är att undersöka de för närvarande tillgängliga metodernaoch designa ett visuellt baserat positioneringssystem för drönare. Det resulterande systemet utvärderas och visas ge acceptabla positionsuppskattningar.
Lee, Hong Yun. „Deep Learning for Visual-Inertial Odometry: Estimation of Monocular Camera Ego-Motion and its Uncertainty“. The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156331321922759.
Der volle Inhalt der QuelleRingdahl, Viktor. „Stereo Camera Pose Estimation to Enable Loop Detection“. Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-154392.
Der volle Inhalt der QuelleReady, Bryce Benson. „Filtering Techniques for Pose Estimation with Applications to Unmanned Air Vehicles“. BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3490.
Der volle Inhalt der QuelleKim, Jae-Hak, und Jae-Hak Kim@anu edu au. „Camera Motion Estimation for Multi-Camera Systems“. The Australian National University. Research School of Information Sciences and Engineering, 2008. http://thesis.anu.edu.au./public/adt-ANU20081211.011120.
Der volle Inhalt der QuelleLi, Diya. „Simultaneous Three-Dimensional Mapping and Geolocation of Road Surface“. Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/85470.
Der volle Inhalt der QuelleMaster of Science
This thesis paper presents a simultaneous three dimensional (3D) mapping and geolocation of road surface technique that combines local road surface mapping and global camera localization. The local road surface is reconstructed by image processing technique with optimization. And the designed system globally reconstructs 3D road surface by estimating the global camera poses using the proposed Adaptive Extended Kalman Filter (AEKF)-based method and integrates with local road surface reconstructing technique. The camera pose uses image shift as prior, and is corrected with the sparse low-accuracy Global Positioning System (GPS) data and digital elevation map (DEM). The final 3D road surface map with geolocation is generated by combining both local road surface mapping and global localization results. The proposed technique is tested in both simulation and field experiment, and compared with similar previous work. The results show that the proposed technique achieves better accuracy than conventional Extended Kalman Filter (EKF) method and achieves smaller translation error than other similar other works.
Dill, Evan T. „GPS/Optical/Inertial Integration for 3D Navigation and Mapping Using Multi-copter Platforms“. Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1427382541.
Der volle Inhalt der QuelleJaníček, Kryštof. „Odhad rychlosti vozidla ze záznamu on-board kamery“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-385901.
Der volle Inhalt der QuelleSvoboda, Ondřej. „Analýza vlastností stereokamery ZED ve venkovním prostředí“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-399416.
Der volle Inhalt der QuellePedreira, Carabel Carlos Javier. „Terrain Mapping for Autonomous Vehicles“. Thesis, KTH, Datorseende och robotik, CVAP, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174132.
Der volle Inhalt der QuelleAutonoma fordon har blivit spetsen för bilindustrin i dag i sökandet efter säkrare och effektivare transportsystem. En av de viktigaste sakerna för varje autonomt fordon består i att vara medveten om sin position och närvaron av hinder längs vägen. Det aktuella projektet behandlar position och riktning samt terrängkartläggningsproblemet genom att integrera en visuell distansmätnings och kartläggningsmetod. RGB-D kameran Kinect v2 från Microsoft valdes som sensor för att samla in information från omgivningen. Den var ansluten till en Intel mini PC för realtidsbehandling. Båda komponenterna monterades på ett fyrhjuligt forskningskonceptfordon (RCV) för att testa genomförbarheten av den nuvarande lösningen i utomhusmiljöer. Robotoperativsystemet (ROS) användes som utvecklingsmiljö med C++ som programmeringsspråk. Den visuella distansmätningsstrategin bestod i en bildregistrerings-algoritm som kallas Adaptive Iterative Closest Keypoint (AICK) baserat på Iterative Closest Point (ICP) med hjälp av Oriented FAST och Rotated BRIEF (ORB) som nyckelpunktsutvinning från bilder. En rutnätsbaserad lokalkostnadskarta av rullande-fönster-typ implementerades för att få en tvådimensionell representation av de hinder som befinner sig nära fordonet inom ett fördefinierat område, i syfte att möjliggöra ytterligare applikationer för körvägen. Experiment utfördes både offline och i realtid för att testa systemet i inomhus- och utomhusscenarier. Resultaten bekräftade möjligheten att använda den utvecklade metoden för att spåra position och riktning av kameran samt upptäcka föremål i inomhusmiljöer. Men utomhus visades begränsningar i RGB-D-sensorn som gör att den aktuella systemkonfigurationen är värdelös för utomhusbruk.
Ellingson, Gary James. „Cooperative Navigation of Fixed-Wing Micro Air Vehicles in GPS-Denied Environments“. BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8706.
Der volle Inhalt der QuelleJackson, James Scott. „Enabling Autonomous Operation of Micro Aerial Vehicles Through GPS to GPS-Denied Transitions“. BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8709.
Der volle Inhalt der QuelleWieser, Andreas [Verfasser]. „GPS based velocity estimation : And its application to an odometer / Andreas Wieser“. Aachen : Shaker, 2007. http://d-nb.info/1166512916/34.
Der volle Inhalt der QuelleWheeler, David Orton. „Relative Navigation of Micro Air Vehicles in GPS-Degraded Environments“. BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6609.
Der volle Inhalt der QuelleHardt, Hans-Joachim von der. „Contribution au pilotage et à la localisation d'un robot mobile“. Vandoeuvre-les-Nancy, INPL, 1997. http://www.theses.fr/1997INPL120N.
Der volle Inhalt der QuelleDiviš, Jiří. „Visual odometry from omnidirectional camera“. Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-328572.
Der volle Inhalt der QuelleDiviš, Jiří. „Visual odometry from omnidirectional camera“. Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-305129.
Der volle Inhalt der QuelleZborovský, Peter. „Odhad hloubky ve scéně na základě obrazu a odometrie“. Master's thesis, 2018. http://www.nusl.cz/ntk/nusl-383295.
Der volle Inhalt der QuelleHong, Kai-Chen, und 洪楷宸. „The Study of Ego-motion Estimation for a Moving Object with Monocular Camera using Visual Odometry“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/x64wny.
Der volle Inhalt der Quelle國立交通大學
電控工程研究所
107
Visual odometry is the process of estimating the ego-motion of a moving object. In other words, visual odometry is the process of determining the position of a moving object. Then, the SLAM system is considered to be the best method for spatial positioning technology in the visual field. However, the SLAM system is quite large (the front-end: visual odometry, the back-end: optimization of the ego-motion estimation error), If the system need to perform other arithmetic processing at the same time, it will face challenges in terms of real-time. There are two contributions of this thesis. First, this thesis proposes an algorithm called image series from ego-motion estimation. Through the processing of the algorithm, even if the optimization of the ego-motion estimation error is not relied on by the back-end of the SLAM system, the estimation of the ego-motion of a moving object can be appropriately performed. Second, the system proposed in this paper can achieve a well balance between real-time, processing speed, lightness, and accuracy.
Hänert, Stephan. „Entwicklung und Validierung methodischer Konzepte einer kamerabasierten Durchfahrtshöhenerkennung für Nutzfahrzeuge“. 2019. https://tud.qucosa.de/id/qucosa%3A71402.
Der volle Inhalt der QuelleThe present work deals with the conception and development of a novel advanced driver assistance system for commercial vehicles, which estimates the clearance height of obstacles in front of the vehicle and determines the passability by comparison with the adjustable vehicle height. The image sequences captured by a mono camera are used to create a 3D representation of the driving environment using indirect and direct reconstruction methods. The 3D representation is scaled and a prediction of the longitudinal and lateral movement of the vehicle is determined with the aid of a wheel odometry-based estimation of the vehicle's own movement. Based on the vertical elevation plan of the road surface, which is modelled by attaching several surfaces together, the 3D space is classified into driving surface, structure and potential obstacles. The obstacles within the predicted driving tube are evaluated with regard to their distance and height. A warning concept derived from this serves to visually and acoustically signal the obstacle in the vehicle's instrument cluster. If the driver does not respond accordingly, emergency braking will be applied at critical obstacle heights. The estimated vehicle movement and calculated obstacle parameters are evaluated with the aid of reference sensors. A dGPS-supported inertial measurement unit and a terrestrial as well as a mobile laser scanner are used. Within the scope of the work, different environmental situations and obstacle types in urban and rural areas are investigated and statements on the accuracy and reliability of the implemented function are made. A major factor influencing the density and accuracy of 3D reconstruction is uniform ambient lighting within the image sequence. In this context, the use of an automotive camera is mandatory. The inherent motion determined by wheel odometry is suitable for scaling the 3D point space in the slow speed range. The 3D representation however, should be created by a combination of indirect and direct point reconstruction methods. The indirect part supports the initialization phase of the function and enables a robust camera estimation. The direct method enables the reconstruction of a large number of 3D points on the obstacle outlines, which usually contain the lower edge. The lower edge can be detected and tracked up to 20 m away. The biggest factor influencing the accuracy of the calculation of the clearance height of obstacles is the modelling of the driving surface. To reduce outliers in the height calculation, the method can be stabilized by using calculations from older time steps. As a further stabilization measure, it is also recommended to support the obstacle output to the driver and the automatic emergency brake assistant by means of hysteresis. The system presented here is suitable for parking and maneuvering operations and is interesting as a cost-effective driver assistance system for cars with superstructures and light commercial vehicles.