Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ocean circulation Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ocean circulation Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ocean circulation Mathematical models"
Koutitas, Christopher, und Maria Gousidou-Koutita. „A comparative study of three mathematical models for wind-generated circulation in coastal areas“. Coastal Engineering 10, Nr. 2 (Juli 1986): 127–38. http://dx.doi.org/10.1016/0378-3839(86)90013-x.
Der volle Inhalt der QuelleLucas, Carine, Madalina Petcu und Antoine Rousseau. „Quasi-hydrostatic primitive equations for ocean global circulation models“. Chinese Annals of Mathematics, Series B 31, Nr. 6 (22.10.2010): 939–52. http://dx.doi.org/10.1007/s11401-010-0611-6.
Der volle Inhalt der QuelleQiao, Fangli, Yeli Yuan, Jia Deng, Dejun Dai und Zhenya Song. „Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, Nr. 2065 (13.04.2016): 20150201. http://dx.doi.org/10.1098/rsta.2015.0201.
Der volle Inhalt der QuelleBelyaev, K. P., A. A. Kuleshov, I. N. Smirnov und C. A. S. Tanajura. „Comparison of Data Assimilation Methods in Hydrodynamics Ocean Circulation Models“. Mathematical Models and Computer Simulations 11, Nr. 4 (Juli 2019): 564–74. http://dx.doi.org/10.1134/s2070048219040045.
Der volle Inhalt der QuelleZanna, Laure, und Eli Tziperman. „Optimal Surface Excitation of the Thermohaline Circulation“. Journal of Physical Oceanography 38, Nr. 8 (01.08.2008): 1820–30. http://dx.doi.org/10.1175/2008jpo3752.1.
Der volle Inhalt der QuelleJanecki, Maciej, Dawid Dybowski, Jaromir Jakacki, Artur Nowicki und Lidia Dzierzbicka-Glowacka. „The Use of Satellite Data to Determine the Changes of Hydrodynamic Parameters in the Gulf of Gdańsk via EcoFish Model“. Remote Sensing 13, Nr. 18 (08.09.2021): 3572. http://dx.doi.org/10.3390/rs13183572.
Der volle Inhalt der QuelleSaenz, Juan A., Qingshan Chen und Todd Ringler. „Prognostic Residual Mean Flow in an Ocean General Circulation Model and its Relation to Prognostic Eulerian Mean Flow“. Journal of Physical Oceanography 45, Nr. 9 (September 2015): 2247–60. http://dx.doi.org/10.1175/jpo-d-15-0024.1.
Der volle Inhalt der QuelleThompson, Andrew F. „The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, Nr. 1885 (25.09.2008): 4529–41. http://dx.doi.org/10.1098/rsta.2008.0196.
Der volle Inhalt der QuelleBelyaev, Konstantin P., und Clemente A. S. Tanajura. „On the correction of perturbations due to data assimilation in ocean circulation models“. Applied Mathematical Modelling 29, Nr. 7 (Juli 2005): 690–709. http://dx.doi.org/10.1016/j.apm.2004.10.001.
Der volle Inhalt der QuelleHogg, Andrew McC, und David R. Munday. „Does the sensitivity of Southern Ocean circulation depend upon bathymetric details?“ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, Nr. 2019 (13.07.2014): 20130050. http://dx.doi.org/10.1098/rsta.2013.0050.
Der volle Inhalt der QuelleDissertationen zum Thema "Ocean circulation Mathematical models"
Bermejo-Bermejo, Rodolfo. „A finite element model of ocean circulation“. Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26166.
Der volle Inhalt der QuelleScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Kiss, Andrew Elek. „Dynamics of laboratory models of the wind-driven ocean circulation“. View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20011018.115707/index.html.
Der volle Inhalt der QuelleVillanoy, Cesar Laurel. „Modification of the throughflow water properties in the Indonesian seas“. Thesis, The University of Sydney, 1993. https://hdl.handle.net/2123/26591.
Der volle Inhalt der QuelleJung, Kyung Tae. „On three-dimensional hydrodynamic numerical modelling of wind induced flows in stably stratified waters : a Galerkin-finite difference approach“. Title page, contents and summary only, 1989. http://web4.library.adelaide.edu.au/theses/09PH/09phj95.pdf.
Der volle Inhalt der QuelleWeaver, Anthony T. „On assimilating sea surface temperature data into an ocean general circulation model“. Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29204.
Der volle Inhalt der QuelleScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
BRIKOWSKI, TOM HARRY. „A QUANTITATIVE ANALYSIS OF HYDROTHERMAL CIRCULATION AROUND MID-OCEAN RIDGE MAGMA CHAMBERS“. Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184128.
Der volle Inhalt der QuelleCirano, Mauro School of Mathematics UNSW. „Wintertime Circulation within the Southeast Indian Ocean: a Numerical Study“. Awarded by:University of New South Wales. School of Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17820.
Der volle Inhalt der QuelleDuhaut, Thomas H. A. „Wind-driven circulation : impact of a surface velocity dependent wind stress“. Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101117.
Der volle Inhalt der QuelleThe ocean current signature is clearly visible in the scatterometer-derived wind stress fields. We argue that because the actual ocean velocity differs from the modeled ocean velocities, care must be taken in directly applying scatterometer-derived wind stress products to the ocean circulation models. This is not to say that the scatterometer-derived wind stress is not useful. Clearly the great spatial and temporal coverage make these data sets invaluable. Our point is that it is better to separate the atmospheric and oceanic contribution to the stresses.
Finally, the new wind stress decreases the sensitivity of the solution to the (poorly known) bottom friction coefficient. The dependence of the circulation strength on different values of bottom friction is examined under the standard and the new wind stress forcing for two topographic configurations. A flat bottom and a meridional ridge case are studied. In the flat bottom case, the new wind stress leads to a significant reduction of the sensitivity to the bottom friction parameter, implying that inertial runaway occurs for smaller values of bottom friction coefficient. The ridge case also gives similar results. In the case of the ridge and the new wind stress formulation, no real inertial runaway regime has been found over the range of parameters explored.
Dail, Holly Janine. „Atlantic Ocean circulation at the last glacial maximum : inferences from data and models“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78367.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 221-236).
This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO₂ concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of [delta]¹⁸O and [delta]¹³C compiled by Marchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein succesfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic [delta]¹⁸O and [delta]¹³C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
by Holly Janine Dail.
Ph.D.
Mazloff, Matthew R. „Production and analysis of a Southern Ocean state estimate“. Thesis, Online version, 2006. http://hdl.handle.net/1912/1282.
Der volle Inhalt der Quelle"September 2006." Bibliography: p. 97-106.
Bücher zum Thema "Ocean circulation Mathematical models"
A, Beckmann, Hrsg. Numerical ocean circulation modeling. London: Imperial College Press, 1999.
Den vollen Inhalt der Quelle findenMarchuk, G. I. Mathematical modelling of the ocean circulation. Berlin: Springer-Verlag, 1988.
Den vollen Inhalt der Quelle findenModeli okeanskikh prot︠s︡essov. Moskva: "Nauka", 1989.
Den vollen Inhalt der Quelle findenChechelnitsky, Michael Y. Adaptive error estimation in linearized ocean general circulation models. Cambridge, Mass: Massachusetts Institute of Technology, 1999.
Den vollen Inhalt der Quelle findenOberhuber, Josef M. Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. Hamburg, Germany: Max-Planck-Institut fuer Meteorologie, 1990.
Den vollen Inhalt der Quelle findenStanev, Emil V. Numerical study on the Black Sea circulation. Hamburg: Eigenverlag des Instituts für Meereskunde der Universität Hamburg, 1988.
Den vollen Inhalt der Quelle findenWunsch, Carl. The ocean circulation inverse problem. Cambridge: Cambridge University Press, 1996.
Den vollen Inhalt der Quelle findenFundamentals of ocean climate models. Princeton, N.J: Princeton University Press, 2004.
Den vollen Inhalt der Quelle findenTsujino, Hiroyuki. Modelling study on thermohaline circulation in the Pacific Ocean. [Tokyo]: Center for Climate System Research, University of Tokyo, 1999.
Den vollen Inhalt der Quelle findenWang, Xiao Hua. Open boundary conditions in a three dimentional coastal ocean model. Canberra, ACT, Australia: School of Geography and Oceanography, University College, The University of New South Wales, Australian Defence Force Academy, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ocean circulation Mathematical models"
Marchuk, G. I., und A. S. Sarkisyan. „Formulation of the Problem, Transformation of Equations and Elaboration of Ocean Circulation Models“. In Mathematical Modelling of Ocean Circulation, 1–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61376-0_1.
Der volle Inhalt der QuelleSaint-Raymond, Laure. „The Role of Boundary Layers in the Large-scale Ocean Circulation“. In Mathematical Models and Methods for Planet Earth, 11–24. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02657-2_2.
Der volle Inhalt der QuelleOlbers, Dirk, Carsten Eden, Erich Becker, Friederike Pollmann und Johann Jungclaus. „The IDEMIX Model: Parameterization of Internal Gravity Waves for Circulation Models of Ocean and Atmosphere“. In Mathematics of Planet Earth, 87–125. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05704-6_3.
Der volle Inhalt der QuelleHodnett, P. F., und Raymond McNamara. „Baroclinic Structure of a Modified Stommel-Arons Model of the Abyssal Ocean Circulation“. In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 161–66. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_19.
Der volle Inhalt der QuelleOlbers, Dirk, Jürgen Willebrand und Carsten Eden. „Models of the Ocean Circulation“. In Ocean Dynamics, 663–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_18.
Der volle Inhalt der QuellePedlosky, Joseph. „Homogeneous Models of the Ocean Circulation“. In Ocean Circulation Theory, 25–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03204-6_2.
Der volle Inhalt der QuellePedlosky, Joseph. „Vertical Structure: Baroclinic Quasi-Geostrophic Models“. In Ocean Circulation Theory, 93–170. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03204-6_3.
Der volle Inhalt der QuelleMcWilliams, James C. „Oceanic General Circulation Models“. In Ocean Modeling and Parameterization, 1–44. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5096-5_1.
Der volle Inhalt der QuelleGangopadhyay, Avijit. „Multiscale Ocean Models“. In Introduction to Ocean Circulation and Modeling, 223–50. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429347221-10.
Der volle Inhalt der QuelleOlbers, Dirk J. „Diagnostic Models of Ocean Circulation“. In Large-Scale Transport Processes in Oceans and Atmosphere, 201–23. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4768-9_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ocean circulation Mathematical models"
Farina, R., S. Cuomo und P. De Michele. „An inverse preconditioner for a free surface ocean circulation model“. In 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4765513.
Der volle Inhalt der QuelleBarzegar, Sadegh, Alireza Elhami Amiri, Pooyan Rahbar und Mehdi Assadi Niazi. „Sea Water Pump Station Basin Mathematical Hydraulic Model Test (CFD Analysis)“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79245.
Der volle Inhalt der QuelleSaasen, Arild, Jan David Ytrehus und Bjørnar Lund. „Annular Frictional Pressure Losses for Drilling Fluids“. In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18709.
Der volle Inhalt der QuelleVankevich, Roman, Roman Vankevich, Ekaterina Sofina, Ekaterina Sofina, Tatjana Eremina, Tatjana Eremina, Mikhail Molchanov et al. „DEVELOPMENT OF A NEMO BASED OPERATIONAL SYSTEM FOR THE GULF OF FINLAND AND THE KALININGRAD SHELF“. In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93cbe18747.49034561.
Der volle Inhalt der QuelleVankevich, Roman, Roman Vankevich, Mikhail Molchanov, Mikhail Molchanov, Ekaterina Sofina, Ekaterina Sofina, Vladimir Ryabchenko et al. „DEVELOPMENT OF A NEMO BASED OPERATIONAL SYSTEM FOR THE GULF OF FINLAND AND THE KALININGRAD SHELF“. In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93f0b46083.45377437.
Der volle Inhalt der QuelleVankevich, Roman, Roman Vankevich, Mikhail Molchanov, Mikhail Molchanov, Ekaterina Sofina, Ekaterina Sofina, Vladimir Ryabchenko et al. „DEVELOPMENT OF A NEMO BASED OPERATIONAL SYSTEM FOR THE GULF OF FINLAND AND THE KALININGRAD SHELF“. In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58cb90a34d5c8.
Der volle Inhalt der QuelleMonier, L., F. Brossier, F. Razafimahery und Michail D. Todorov. „Validation of a Three-Dimensional Model of the Ocean Circulation“. In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS: Proceedings of the 34th Conference on Applications of Mathematics in Engineering and Economics (AMEE '08). AIP, 2008. http://dx.doi.org/10.1063/1.3030795.
Der volle Inhalt der QuelleFarina, R., S. Cuomo, P. De Michele, Theodore E. Simos, George Psihoyios, Ch Tsitouras und Zacharias Anastassi. „A CUBLAS-CUDA Implementation of PCG Method of an Ocean Circulation Model“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636988.
Der volle Inhalt der QuelleGriffies, S. M., S. M. Griffies, S. M. Griffies, S. M. Griffies, S. M. Griffies, S. M. Griffies, S. M. Griffies et al. „Problems and Prospects in Large-Scale Ocean Circulation Models“. In OceanObs'09: Sustained Ocean Observations and Information for Society. European Space Agency, 2010. http://dx.doi.org/10.5270/oceanobs09.cwp.38.
Der volle Inhalt der QuelleTANAKA, Y., M. TSUGAWA, Y. MIMURA und T. SUZUKI. „DEVELOPMENT OF PARALLEL OCEAN GENERAL CIRCULATION MODELS ON THE EARTH SIMULATOR“. In Proceedings of the Tenth ECMWF Workshop on the Use of High Performance Computers in Meteorology. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704832_0005.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ocean circulation Mathematical models"
Whitehead, John A. Laboratory Models of Ocean Circulation. Fort Belvoir, VA: Defense Technical Information Center, Juni 1997. http://dx.doi.org/10.21236/ada326697.
Der volle Inhalt der QuelleIskandarani, Mohamed, Omar Knio, Ashwanth Srinivasan und William C. Thacker. Quantifying Prediction Fidelity in Ocean Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada590693.
Der volle Inhalt der QuelleIskandarani, Mohamed, Omar Knio, Ashwanth Srinivasan und William C. Thacker. Quantifying Prediction Fidelity in Ocean Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada601423.
Der volle Inhalt der QuellePoling, D. A. Benchmarking ocean circulation models on massively parallel computers. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/515635.
Der volle Inhalt der QuelleHallberg, Robert, Rainer Bleck, Eric Chassignet, Roland deSzoeke, Stephen Griffies, Paul Schoft, Scott Springer und Alan Walicraft. A Vision for Ocean Circulation Models: Generalized Vertical Coordinates. Fort Belvoir, VA: Defense Technical Information Center, März 2004. http://dx.doi.org/10.21236/ada593098.
Der volle Inhalt der QuelleSmith, Raymond C. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada629643.
Der volle Inhalt der QuelleMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630449.
Der volle Inhalt der QuelleMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada630666.
Der volle Inhalt der QuelleMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada619153.
Der volle Inhalt der QuelleMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada622170.
Der volle Inhalt der Quelle