Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ocean-atmosphere interaction Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ocean-atmosphere interaction Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ocean-atmosphere interaction Mathematical models"
Qiao, Fangli, Yeli Yuan, Jia Deng, Dejun Dai und Zhenya Song. „Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, Nr. 2065 (13.04.2016): 20150201. http://dx.doi.org/10.1098/rsta.2015.0201.
Der volle Inhalt der QuelleOstroukh, Andrey, Andrey Mavrin und Nataliya Surkova. „Technological Processes Automation of Chemical Heat Treatment at Industrial Enterprises“. Advanced Materials Research 1098 (April 2015): 120–25. http://dx.doi.org/10.4028/www.scientific.net/amr.1098.120.
Der volle Inhalt der QuelleMehra, Vinayak, Varun Gupta und Pradeep Khanna. „MATHEMATICAL MODELLING TO PREDICT ANGULAR DISTORTION IN MIG WELDING OF STAINLESS STEEL 202 PLATES“. Journal of Production Engineering 23, Nr. 2 (30.12.2020): 16–20. http://dx.doi.org/10.24867/jpe-2020-02-016.
Der volle Inhalt der QuelleLi, Ke Hua, Jin Yong Yu und Jun Wei Lei. „Research on Modeling and Simulation of Sonar Performance Using Simulink“. Applied Mechanics and Materials 138-139 (November 2011): 804–9. http://dx.doi.org/10.4028/www.scientific.net/amm.138-139.804.
Der volle Inhalt der QuelleTURCANU, Alexandru, und Leonard-Călin-Valentin DOBRE. „DIMENSIONAREA SISTEMULUI DE PROPULSIE AL UNUI VEHICUL ELECTRIC. STUDIU DE CAZ“. "ACTUALITĂŢI ŞI PERSPECTIVE ÎN DOMENIUL MAŞINILOR ELECTRICE (ELECTRIC MACHINES, MATERIALS AND DRIVES - PRESENT AND TRENDS)" 2020, Nr. 1 (10.02.2021): 1–14. http://dx.doi.org/10.36801/apme.2020.1.4.
Der volle Inhalt der QuelleHeywood, Karen J., Sunke Schmidtko, Céline Heuzé, Jan Kaiser, Timothy D. Jickells, Bastien Y. Queste, David P. Stevens et al. „Ocean processes at the Antarctic continental slope“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, Nr. 2019 (13.07.2014): 20130047. http://dx.doi.org/10.1098/rsta.2013.0047.
Der volle Inhalt der QuelleMukhartova, Iuliia, Alexander Krupenko, Polina Mangura und Alexander Olchev. „Mathematical Modeling of Vegetation Heterogeneity and Complex Topography Effects on Turbulent Exchange of GHG within the Atmospheric Surface Layer“. Proceedings 2, Nr. 20 (17.10.2018): 1310. http://dx.doi.org/10.3390/proceedings2201310.
Der volle Inhalt der QuelleKovalnogov, Vladislav N., Yuriy A. Khakhalev, Ekaterina V. Tsvetova und Larisa V. Khakhaleva. „MATHEMATICAL MODELING AND NUMERICAL STUDY OF ATMOSPHERIC BOUNDARY LAYER NEAR WINDFARMS“. Автоматизация процессов управления 3, Nr. 65 (2021): 33–40. http://dx.doi.org/10.35752/1991-2927-2021-3-65-33-40.
Der volle Inhalt der QuelleSangale, Bhagwan, U. M. Khodke H. W. Awari und Vishal Ingle. „Crop Growth Simulation Modelling - A Review“. International Journal of Current Microbiology and Applied Sciences 11, Nr. 1 (10.01.2022): 78–84. http://dx.doi.org/10.20546/ijcmas.2022.1101.010.
Der volle Inhalt der QuelleGusev, E. M., und O. N. Nasonova. „Simulating of snow cover formation by the model of interaction between the land surface and the atmosphere (SWAP)“. Ice and Snow 59, Nr. 2 (11.06.2019): 167–81. http://dx.doi.org/10.15356/2076-6734-2019-2-401.
Der volle Inhalt der QuelleDissertationen zum Thema "Ocean-atmosphere interaction Mathematical models"
Kiss, Andrew Elek. „Dynamics of laboratory models of the wind-driven ocean circulation“. View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20011018.115707/index.html.
Der volle Inhalt der QuelleSantoso, Agus Mathematics & Statistics Faculty of Science UNSW. „Evolution of climate anomalies and variability of Southern Ocean water masses on interannual to centennial time scales“. Awarded by:University of New South Wales. School of Mathematics and Statistics, 2005. http://handle.unsw.edu.au/1959.4/33355.
Der volle Inhalt der QuelleAlves, Jose Henrique Gomes de Mattos Mathematics UNSW. „A Saturation-Dependent Dissipation Source Function for Wind-Wave Modelling Applications“. Awarded by:University of New South Wales. Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17786.
Der volle Inhalt der QuelleArbic, Brian K. „Generation of mid-ocean eddies : the local baroclinic instability hypothesis“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/53047.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 284-290).
by Brian Kenneth Arbic.
Ph.D.
Agudelo, Paula A. „Role of Local Thermodynamic Coupling in the Life Cycle of the Intraseasonal Oscillation in the Indo-Pacific Warm Pool“. Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19834.
Der volle Inhalt der QuelleWei, Jiangfeng. „Land-atmosphere interaction and climate variability“. Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-05162007-151312/.
Der volle Inhalt der QuelleStieglitz, Marc, Committee Member ; Guillas, Serge, Committee Member ; Fu, Rong, Committee Member ; Curry, Judith, Committee Member ; Dickinson, Robert, Committee Chair.
Dail, Holly Janine. „Atlantic Ocean circulation at the last glacial maximum : inferences from data and models“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78367.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 221-236).
This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO₂ concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of [delta]¹⁸O and [delta]¹³C compiled by Marchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein succesfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic [delta]¹⁸O and [delta]¹³C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
by Holly Janine Dail.
Ph.D.
Verdy, Ariane. „Dynamics of marine zooplankton : social behavior, ecological interactions, and physically-induced variability“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43158.
Der volle Inhalt der QuelleIncludes bibliographical references (p. [221]-232).
Marine ecosystems reflect the physical structure of their environment and the biological processes they carry out. This leads to spatial heterogeneity and temporal variability, some of which is imposed externally and some of which emerges from the ecological mechanisms themselves. The main focus of this thesis is on the formation of spatial patterns in the distribution of zooplankton arising from social interactions between individuals. In the Southern Ocean, krill often assemble in swarms and schools, the dynamics of which have important ecological consequences. Mathematical and numerical models are employed to study the interplay of biological and physical processes that contribute to the observed patchiness. The evolution of social behavior is simulated in a theoretical framework that includes zooplankton population dynamics, swimming behavior, and some aspects of the variability inherent to fluid environments. First, I formulate a model of resource utilization by a stage-structured predator population with density-dependent reproduction. Second, I incorporate the predator-prey dynamics into a spatially-explicit model, in which aggregations develop spontaneously as a result of linear instability of the uniform distribution. In this idealized ecosystem, benefits related to the local abundance of mates are offset by the cost of having to share resources with other group members. Third, I derive a weakly nonlinear approximation for the steady-state distributions of predator and prey biomass that captures the spatial patterns driven by social tendencies. Fourth, I simulate the schooling behavior of zooplankton in a variable environment; when turbulent flows generate patchiness in the resource field, schools can forage more efficiently than individuals.
(cont.) Taken together, these chapters demonstrate that aggregation/ schooling can indeed be the favored behavior when (i) reproduction (or other survival measures) increases with density in part of the range and (ii) mixing of prey into patches is rapid enough to offset the depletion. In the final two chapters, I consider sources of temporal variability in marine ecosystems. External perturbations amplified by nonlinear ecological interactions induce transient ex-cursions away from equilibrium; in predator-prey dynamics the amplitude and duration of these transients are controlled by biological processes such as growth and mortality. In the Southern Ocean, large-scale winds associated with ENSO and the Southern Annular Mode cause convective mixing, which in turn drives air-sea fluxes of carbon dioxide and oxygen. Whether driven by stochastic fluctuations or by climatic phenomena, variability of the biogeochemical/physical environment has implications for ecosystem dynamics.
by Ariane Verdy.
Ph.D.
Verdy, Ariane. „Variability of zooplankton and sea surface temperature in the Southern Ocean“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39197.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 69-74).
Interactions between physical and biological processes in the Southern Ocean have significant impacts on local ecosystems as well as on global climate. In this thesis, I present evidence that the Southern Ocean circulation affects the variability of zooplankton and sea surface temperature, both of which are involved in air-sea exchanges of carbon dioxide. First, I examine the formation of spatial patterns in the distribution of Antarctic krill (Euphausia superba) resulting from social behavior. Turbulence of the flow is found to provide favorable conditions for the evolution social behavior in an idealized biological-physical model. Second, I analyze observations of sea surface temperature variability in the region of the Antarctic circumpolar current. Results suggest that propagating anomalies can be explained as a linear response to local atmospheric forcing by the Southern Annular Mode and remote forcing by El-Nifio southern oscillation, in the presence of advection by a mean flow.
by Ariane Verdy.
S.M.
Link, Shmuel G. „Field measurements of a swell band, shore normal, flux divergence reversal“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/67625.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 55-56).
Throughout this thesis we will discuss the theoretical background and empirical observation of a swell band shore normal flux divergence reversal. Specifically, we will demonstrate the existence and persistence of the energy flux divergence reversal in the nearshore region of Atchafalaya Bay, Gulf of Mexico, across storms during the March through April 2010 deployment. We will show that the swell band offshore component of energy flux is rather insignificant during the periods of interest, and as such we will neglect it during the ensuing analysis. The data presented will verify that the greatest flux divergence reversal is seen with winds from the East to Southeast, which is consistent with theories which suggest shoreward energy flux as well as estuarine sediment transport and resuspension prior to passage of a cold front. Employing the results of theoretical calculations and numerical modeling we will confirm that a plausible explanation for this phenomena can be found in situations where temporally varying wind input may locally balance or overpower bottom induced dissipation, which may also contravene the hypothesis that dissipation need increase shoreward due to nonlinear wave-wave interactions and maturation of the spectrum. Lastly, we will verify that the data presented is consistent with other measures collected during the same deployment in the Atchafalaya Bay during March - April 2010.
by Shmuel G. Link.
S.M.
Bücher zum Thema "Ocean-atmosphere interaction Mathematical models"
Kagan, B. A. Ocean-atmosphere interaction and climate modelling. Cambridge [England]: Cambridge University Press, 1995.
Den vollen Inhalt der Quelle finden1945-, Norbury John, und Roulstone Ian, Hrsg. Large-scale atmosphere-ocean dynamics. Cambridge, U.K: Cambridge University Press, 2002.
Den vollen Inhalt der Quelle findenMarchuk, G. I. Matematicheskie modeli v geofizicheskoĭ gidrodinamike i chislennye metody ikh realizat͡s︡ii. Leningrad: Gidrometeoizdat, 1987.
Den vollen Inhalt der Quelle findenMitchell, Ross P. A numerical study of seasonal wind forcing effects on the California Current System. Monterey, Calif: Naval Postgraduate School, 1993.
Den vollen Inhalt der Quelle findenOberholzner, Werner. SWADE data guide. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1996.
Den vollen Inhalt der Quelle findenHaines, Robert T. A numerical study of interannual wind forcing effects on the California Current System, 1980-1983. Monterey, Calif: Naval Postgraduate School, 1994.
Den vollen Inhalt der Quelle findenJankowski, Andrzej. Symulacja cyrkulacji wód Bałtyku dla wybranych miesięcy od kwietnia do listopada. Sopot: Polska Akademia Nauk, Instytut Oceanologii w Sopocie, 1998.
Den vollen Inhalt der Quelle findenBacon, Jeffrey L. A numerical study of the effects of wind forcing on the Chilean Current System. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenBayler, Eric Judson. Seasonal wind and ocean thermal forcing influences on the generation of the Leeuwin Current and its eddies. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenBacon, Jeffrey L. A numerical study of the effects of wind forcing on the Chilean Current System. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ocean-atmosphere interaction Mathematical models"
Ocampo-Torres, Francisco J., Pedro Osuna, Héctor García-Nava und Nicolas G. Rascle. „Ocean Surface Waves and Ocean-Atmosphere Interactions“. In Mathematical and Computational Models of Flows and Waves in Geophysics, 35–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12007-7_2.
Der volle Inhalt der QuelleBattisti, David S. „Interannual Variability in Coupled Tropical Atmosphere-Ocean Models“. In Climate-Ocean Interaction, 127–59. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2093-4_7.
Der volle Inhalt der QuelleGent, Peter R. „Parameterizing Eddies in Ocean Climate Models“. In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 19–30. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_2.
Der volle Inhalt der QuelleTucciarone, Francesco L., Etienne Mémin und Long Li. „Primitive Equations Under Location Uncertainty: Analytical Description and Model Development“. In Mathematics of Planet Earth, 287–300. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18988-3_18.
Der volle Inhalt der QuelleGrimshaw, Roger, und Georg Gottwald. „Models for Instability in Geophysical Flows“. In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 153–60. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_18.
Der volle Inhalt der QuelleRõõm, Rein, und Aarne Männik. „Acoustic Filtration in Pressure-Coordinate Models“. In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 221–26. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_29.
Der volle Inhalt der QuelleJelloul, M. Ben, und X. J. Carton. „Asymptotic Models and Application to Vortex Dynamics“. In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 105–10. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_10.
Der volle Inhalt der QuelleGluhovsky, Alexander, und Christopher Tong. „Low-Order Models of Atmospheric Dynamics with Physically Sound Behavior“. In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 147–52. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_17.
Der volle Inhalt der QuelleKraus, Eric B., und Joost A. Businger. „The Planetary Boundary Layer“. In Atmosphere-Ocean Interaction. Oxford University Press, 1995. http://dx.doi.org/10.1093/oso/9780195066180.003.0010.
Der volle Inhalt der QuelleHan, Young-June, Michael E. Schlesinger und W. Lawrence Gates. „Chapter 13 An Analysis of the Air-Sea-Ice Interaction Simulated by the Osu-Coupled Atmosphere-Ocean General Circulation Model“. In Coupled Ocean-Atmosphere Models, 167–82. Elsevier, 1985. http://dx.doi.org/10.1016/s0422-9894(08)70709-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ocean-atmosphere interaction Mathematical models"
Jensen, Gullik A., und Thor I. Fossen. „Mathematical Models for Model-Based Control in Offshore Pipelay Operations“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79372.
Der volle Inhalt der QuellePesce, Celso Pupo, Roberto Ramos, Lauro Massao Yamada da Silveira, Rafael Loureiro Tanaka, Clo´vis de Arruda Martins, Fernanda Cristina Moraes Takafuji, Joa˜o Paulo Zi´lio Novaes und Carlos Alberto Ferreira Godinho. „Structural Behavior of Umbilicals: Part I—Mathematical Modeling“. In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20892.
Der volle Inhalt der QuellePeddle, Adam, Jie Dang und Tom van Terwisga. „Towards a Model for Propeller-Ice Interaction“. In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83088.
Der volle Inhalt der QuelleLuo, Wei-lin, Zao-jian Zou und Hong-liang Xiang. „Simulation of Ship Manoeuvring in the Proximity of a Pier by Using Support Vector Machines“. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49644.
Der volle Inhalt der QuelleNelli, Filippo, David M. Skene, Luke G. Bennetts, Micheal H. Meylan, Jason P. Monty und Alessandro Toffoli. „Experimental and Numerical Models of Wave Reflection and Transmission by an Ice Floe“. In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61248.
Der volle Inhalt der QuelleRosetti, Guilherme Feitosa, Guilherme Vaz und André Luís Condino Fujarra. „On the Effects of Turbulence Modeling on the Fluid-Structure Interaction of a Rigid Cylinder“. In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54989.
Der volle Inhalt der QuelleWiktorski, Ekaterina, und Dan Sui. „Investigation of Stick-Slip Severity in a Coupled Axial-Torsional Drillstring Dynamics Using a Two DOF Finite Element Model“. In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-19320.
Der volle Inhalt der QuelleChhabra, Narender K., James R. Scholten und Jeffrey B. Lozow. „Wave-Generated Forces and Moments on Submersibles: Models for Dynamic Simulation at Periscope Depth“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1257.
Der volle Inhalt der QuelleRandolph, Mark, und Peter Quiggin. „Non-Linear Hysteretic Seabed Model for Catenary Pipeline Contact“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79259.
Der volle Inhalt der QuelleZhan, Dexin, und David Molyneux. „3-Dimensional Numerical Simulation of Ship Motion in Pack Ice“. In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83105.
Der volle Inhalt der Quelle