Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Objective data“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Objective data" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Objective data"
Stix, Gary. „Objective Data“. Scientific American 266, Nr. 3 (März 1992): 108. http://dx.doi.org/10.1038/scientificamerican0392-108.
Der volle Inhalt der QuelleCarr, Edward L. „Objective Data Analysis Conference“. Bulletin of the American Meteorological Society 68, Nr. 5 (01.05.1987): 481–85. http://dx.doi.org/10.1175/1520-0477-68.5.481.
Der volle Inhalt der QuelleTrapp, R. Jeffrey, und Charles A. Doswell. „Radar Data Objective Analysis“. Journal of Atmospheric and Oceanic Technology 17, Nr. 2 (Februar 2000): 105–20. http://dx.doi.org/10.1175/1520-0426(2000)017<0105:rdoa>2.0.co;2.
Der volle Inhalt der QuelleGray, P. W., T. D. Mac Mahon und M. U. Rajput. „Objective data evaluation procedures“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 286, Nr. 3 (Januar 1990): 569–75. http://dx.doi.org/10.1016/0168-9002(90)90918-v.
Der volle Inhalt der QuelleK. Holland, Erin, und Major Major L. King. „Sleep Studies Need Objective Data“. Journal of Psychosocial Nursing and Mental Health Services 46, Nr. 2 (01.02.2008): 13–14. http://dx.doi.org/10.3928/02793695-20080201-07.
Der volle Inhalt der QuelleSmith, G. D., und Y. Ben-Shlomo. „Objective data trials are needed“. BMJ 312, Nr. 7044 (08.06.1996): 1479–80. http://dx.doi.org/10.1136/bmj.312.7044.1479c.
Der volle Inhalt der QuelleOBAYASHI, Shigeru. „Multi-Objective Optimization and Data Mining“. Journal of the Society of Mechanical Engineers 109, Nr. 1050 (2006): 383–85. http://dx.doi.org/10.1299/jsmemag.109.1050_383.
Der volle Inhalt der QuelleM’lan, Cyr Emile, und Ming-Hui Chen. „Objective Bayesian Inference for Bilateral Data“. Bayesian Analysis 10, Nr. 1 (März 2015): 139–70. http://dx.doi.org/10.1214/14-ba890.
Der volle Inhalt der QuelleHuber, Jessica E., Elaine Stathopoulos, Joan Sussman und Kris Tjaden. „Obtaining Objective Data in Clinical Settings“. ASHA Leader 15, Nr. 12 (Oktober 2010): 12–15. http://dx.doi.org/10.1044/leader.ftr2.15122010.12.
Der volle Inhalt der QuelleNoguchi, Kazutaka. „The objective lens for holographic data storage“. Review of Laser Engineering 36, Supplement (2008): S27—S28. http://dx.doi.org/10.2184/lsj.36.s27.
Der volle Inhalt der QuelleDissertationen zum Thema "Objective data"
Kwoh, Chee Keong. „Probabilistic reasoning from correlated objective data“. Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307686.
Der volle Inhalt der QuelleKirkland, Oliver. „Multi-objective evolutionary algorithms for data clustering“. Thesis, University of East Anglia, 2014. https://ueaeprints.uea.ac.uk/51331/.
Der volle Inhalt der QuelleFieldsend, Jonathan E. „Novel algorithms for multi-objective search and their application in multi-objective evolutionary neural network training“. Thesis, University of Exeter, 2003. http://hdl.handle.net/10871/11706.
Der volle Inhalt der QuelleBrown, Nathan C. (Nathan Collin). „Early building design using multi-objective data approaches“. Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123573.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 201-219).
During the design process in architecture, building performance and human experience are increasingly understood through computation. Within this context, this dissertation considers how data science and interactive optimization techniques can be combined to make simulation a more effective component of a natural early design process. It focuses on conceptual design, since technical principles should be considered when global decisions are made concerning the massing, structural system, and other design aspects that affect performance. In this early stage, designers might simulate structure, energy, daylighting, thermal comfort, acoustics, cost, and other quantifiable objectives. While parametric simulations offer the possibility of using a design space exploration framework to make decisions, their resulting feedback must be synthesized together, along with non-quantifiable design goals.
Previous research has developed optimization strategies to handle such multi-objective scenarios, but opportunities remain to further adapt optimization for the creative task of early building design, including increasing its interactivity, flexibility, accessibility, and ability to both support divergent brainstorming and enable focused performance improvement. In response, this dissertation proposes new approaches to parametric design space formulation, interactive optimization, and diversity-based design. These methods span in utility from early ideation, through global design exploration, to local exploration and optimization. The first presented technique uses data science methods to interrogate, transform, and, for specific cases, generate design variables for exploration. The second strategy involves interactive stepping through a design space using estimated gradient information, which offers designers more freedom compared to automated solvers during local exploration.
The third method addresses computational measurement of diversity within parametric design and demonstrates how such measurements can be integrated into creative design processes. These contributions are demonstrated on an integrated early design example and preliminarily validated using a design study that provides feedback on the habits and preferences of architects and engineers while engaging with data-driven tools. This study reveals that performance-enabled environments tend to improve simulated design objectives, while designers prefer more flexibility than traditional automated optimization approaches when given the choice. Together, these findings can stimulate further development in the integration of interactive approaches to multi-objective early building design. Key words: design space exploration, conceptual design, design tradeoffs, interactive design tools, structural design, sustainable design, multi-objective optimization, data science, surrogate modeling
by Nathan C. Brown.
Ph. D. in Architecture: Building Technology
Ph.D.inArchitecture:BuildingTechnology Massachusetts Institute of Technology, Department of Architecture
Mostaghim, Sanaz. „Multi-objective evolutionary algorithms data structures, convergence, and diversity /“. [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974405604.
Der volle Inhalt der QuelleFurst, Séverine. „Multi-objective optimization for joint inversion of geodetic data“. Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS017/document.
Der volle Inhalt der QuelleThe Earth’s surface is affected by numerous local processes like volcanic events, landslides or earthquakes. Along with these natural processes, anthropogenic activities including extraction and storage of deep resources (e.g. minerals, hydrocarbons) shape the Earth at different space and time scales. These mechanisms produce ground deformation that can be detected by various geodetic instruments like GNSS, InSAR, tiltmeters, for example. The purpose of the thesis is to develop a numerical tool to provide the joint inversion of multiple geodetic data associated to plate deformation or volume strain change at depth. Four kinds of applications are targeted: interseismic plate deformation, volcano deformation, deep mining, and oil & gas extraction. Different inverse model complexities were considered: the I-level considers a single type of geodetic data with a time independent process. An application is made with inverting GPS data across southern California to determine the lateral variations of lithospheric rigidity (Furst et al., 2017). The II-level also accounts for a single type of geodetic data but with a time-dependent process. The joint determination of strain change history and the drift parameters of a tiltmeter network is studied through a synthetic example (Furst et al., submitted). The III-level considers different types of geodetic data and a timedependent process. A fictitious network made by GNSS, InSAR, tiltmeters and levelling surveys is defined to compute the time dependent volume change of a deep source of strain. We develop a methodology to implement these different levels of complexity in a single software. Because the inverse problem is possibly ill-posed, the functional to minimize may display several minima. Therefore, a global optimization algorithm is used (Mohammadi and Saïac, 2003). The forward part of the problem is treated by using a collection of numerical and analytical elastic models allowing to model the deformation processes at depth. Thanks to these numerical developments, new advances for inverse geodetic problems should be possible like the joint inversion of various types of geodetic data acquired for volcano monitoring. In this perspective, the possibility to determine by inverse problem the tiltmeter drift parameters should allow for a precise determination of deep strain sources. Also, the developed methodology can be used for an accurate monitoring of oil & gas reservoir deformation
Ray, Subhasis. „Multi-objective optimization of an interior permanent magnet motor“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116021.
Der volle Inhalt der QuelleHabib, Irfan. „Multi-objective optimisation of compute and data intensive e-science workflows“. Thesis, University of the West of England, Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573383.
Der volle Inhalt der QuelleMostaghim, Sanaz [Verfasser]. „Multi-Objective Evolutionary Algorithms : Data Structures, Convergence, and Diversity / Sanaz Mostaghim“. Aachen : Shaker, 2005. http://d-nb.info/1181620465/34.
Der volle Inhalt der QuelleLudick, Chantel Judith. „Disaggregating employment data to building level : a multi-objective optimisation approach“. Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/75596.
Der volle Inhalt der QuelleDissertation (MSc (Geoinformatics))--University of Pretoria, 2020.
Geography, Geoinformatics and Meteorology
MSc (Geoinformatics)
Unrestricted
Bücher zum Thema "Objective data"
Coello, Carlos A. Coello. Swarm intelligence for multi-objective problems in data mining. Berlin: Springer Verlag, 2009.
Den vollen Inhalt der Quelle findenCoello, Carlos Artemio Coello, Satchidananda Dehuri und Susmita Ghosh, Hrsg. Swarm Intelligence for Multi-objective Problems in Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03625-5.
Der volle Inhalt der QuelleA, Hillison William, Hrsg. Auditing & EDP: Objective questions and explanations. 5. Aufl. Gainesville, Fla: Gleim Publications, 1992.
Den vollen Inhalt der Quelle findenLieberman, Elliot R. Multi-objective programming in the USSR. Boston: Academic Press, 1991.
Den vollen Inhalt der Quelle findenGleim, Irvin N. Auditing & EDP: Objective questions and explanations. 4. Aufl. Gainesville, Fla: Gleim Publications, 1991.
Den vollen Inhalt der Quelle findenGleim, Irvin N. Auditing & EDP: Objective questions and explanations. 2. Aufl. Gainesville, Fla: Accounting Publications, 1985.
Den vollen Inhalt der Quelle findenA, Hillison William, und Irwin Grady M, Hrsg. Auditing & EDP: Objective questions and explanations. 3. Aufl. Gainesville, Fla: Accounting Publications, 1988.
Den vollen Inhalt der Quelle findenLieberman, Elliot R. Multi-objective programming in the USSR. Boston: Academic, 1991.
Den vollen Inhalt der Quelle findenGleim, Irvin N. Auditing & systems: Objective questions and explanations. 7. Aufl. Gainesville, Fla: Gleim Publications, 1997.
Den vollen Inhalt der Quelle findenFranke, Richard H. Laplacian smoothing splines with generalized cross validation for objective analysis of meteorological data. Monterey, California: Naval Postgraduate School, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Objective data"
Dovey, James, und Ash Furrow. „Data Management with Core Data“. In Beginning Objective-C, 225–68. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4369-4_8.
Der volle Inhalt der QuelleCampbell, Matthew. „Core Data“. In Objective-C Recipes, 339–408. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4372-4_10.
Der volle Inhalt der QuelleLee, Keith. „Foundation Functions and Data Types“. In Pro Objective-C, 239–52. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-5051-7_13.
Der volle Inhalt der QuelleBennett, Gary, Mitch Fisher und Brad Lees. „Comparing Data“. In Objective-C for Absolute Beginners, 157–74. Berkeley, CA: Apress, 2010. http://dx.doi.org/10.1007/978-1-4302-2833-2_9.
Der volle Inhalt der QuelleBennett, Gary, Mitch Fisher und Brad Lees. „Comparing Data“. In Objective-C for Absolute Beginners, 199–214. Berkeley, CA: Apress, 2011. http://dx.doi.org/10.1007/978-1-4302-3654-2_9.
Der volle Inhalt der QuelleKaczmarek, Stefan, Brad Lees, Gary Bennett und Mitch Fisher. „Comparing Data“. In Objective-C for Absolute Beginners, 255–74. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3429-7_9.
Der volle Inhalt der QuelleBennett, Gary, Brad Lees und Mitchell Fisher. „Comparing Data“. In Objective-C for Absolute Beginners, 207–21. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-1904-1_9.
Der volle Inhalt der QuelleDovey, James, und Ash Furrow. „Networking: Connections, Data, and the Cloud“. In Beginning Objective-C, 159–87. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4369-4_6.
Der volle Inhalt der QuelleMukhopadhyay, Anirban. „Incorporating Gene Ontology Information in Gene Expression Data Clustering Using Multiobjective Evolutionary Optimization: Application in Yeast Cell Cycle Data“. In Multi-Objective Optimization, 55–78. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1471-1_3.
Der volle Inhalt der QuelleMallik, Saurav, Tapas Bhadra, Soumita Seth, Sanghamitra Bandyopadhyay und Jianjiao Chen. „Multi-Objective Optimization Approaches in Biological Learning System on Microarray Data“. In Multi-Objective Optimization, 159–80. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1471-1_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Objective data"
Benouaret, Idir, Sihem Amer-Yahia, Christiane Kamdem-Kengne und Jalil Chagraoui. „A Bi-Objective Approach for Product Recommendations“. In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006503.
Der volle Inhalt der QuelleItonaga, Makoto, Fumihiko Ito und Toshiya Saito. „Analysis of chromatic aberration of single objective lens and correction of that of a NA=0.85 objective lens.“ In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.wa7.
Der volle Inhalt der QuelleBurmester, G., und H. Rohler. „Objective-based Image Data Management“. In Second EAGE Borehole Geology Workshop. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702393.
Der volle Inhalt der QuelleAttaoui, Mohammed Oualid, Hanene Azzag, Mustapha Lebbah und Nabil Keskes. „Multi-objective data stream clustering“. In GECCO '20: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3377929.3389930.
Der volle Inhalt der QuelleZheng, Yong, und David (Xuejun) Wang. „Multi-Objective Recommendations“. In KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447548.3470788.
Der volle Inhalt der QuelleJalali, Leila, Misbah Khan und Rahul Biswas. „Learning and Multi-Objective Optimization for Automatic Identity Linkage“. In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622581.
Der volle Inhalt der QuellePietri, Ilia, Yannis Chronis und Yannis Ioannidis. „Multi-objective optimization of scheduling dataflows on heterogeneous cloud resources“. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8257946.
Der volle Inhalt der QuelleZeng, Fanchao, James Decraene, Malcolm Yoke Hean Low, Cai Wentong, Philip Hingston und Suiping Zhou. „High-dimensional objective-based data farming“. In 2011 Ieee Symposium On Computational Intelligence For Security And Defence Applications - Part Of 17273 - 2011 Ssci. IEEE, 2011. http://dx.doi.org/10.1109/cisda.2011.5945942.
Der volle Inhalt der QuelleAntony, Shyam, Ping Wu, Divyakant Agrawal und Amr El Abbadi. „MOOLAP: Towards Multi-Objective OLAP“. In 2008 IEEE 24th International Conference on Data Engineering (ICDE 2008). IEEE, 2008. http://dx.doi.org/10.1109/icde.2008.4497567.
Der volle Inhalt der QuelleShi, Chuan, Xiangnan Kong, Philip S. Yu und Bai Wang. „Multi-Objective Multi-Label Classification“. In Proceedings of the 2012 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2012. http://dx.doi.org/10.1137/1.9781611972825.31.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Objective data"
Hunt, J. W. Tank safety screening data quality objective. Revision 1. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/61107.
Der volle Inhalt der QuelleGydesen, S. Status of document search and data quality objective efforts. Office of Scientific and Technical Information (OSTI), Oktober 1992. http://dx.doi.org/10.2172/10107852.
Der volle Inhalt der QuelleGydesen, S. Status of document search and data quality objective efforts. Office of Scientific and Technical Information (OSTI), Oktober 1992. http://dx.doi.org/10.2172/6992873.
Der volle Inhalt der QuelleIrvine, Nelson. Analysis of the Objective Data From Fleet Battle Experiment Hotel. Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada389211.
Der volle Inhalt der QuelleIrvine, Nelson. Objective Data from Fleet Battle Experiment Foxtrot, Golf, and Hotel. Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada389356.
Der volle Inhalt der QuelleGates, C. M., und M. R. Beckette. Identification of physical properties for the retrieval data quality objective process. Office of Scientific and Technical Information (OSTI), Juni 1995. http://dx.doi.org/10.2172/86993.
Der volle Inhalt der QuelleTung, S. L. Users Guide for Normal Mode Objective Analysis of Global Data Assimilation,. Fort Belvoir, VA: Defense Technical Information Center, März 1985. http://dx.doi.org/10.21236/ada160373.
Der volle Inhalt der QuelleMeacham, J. E. Data quality objective to support resolution of the organic solvent safety issue. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/341237.
Der volle Inhalt der QuelleKirkbride, R. A. Technical work plan for the privatization waste characterization data quality objective process. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/341255.
Der volle Inhalt der QuelleMulkey, C. H. ,. Westinghouse Hanford. Data quality objective for regulatory requirements for dangerous waste sampling and analysis. Office of Scientific and Technical Information (OSTI), Juli 1996. http://dx.doi.org/10.2172/659219.
Der volle Inhalt der Quelle