Dissertationen zum Thema „Object detection in images“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Object detection in images" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Kok, R. „An object detection approach for cluttered images“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53281.
Der volle Inhalt der QuelleENGLISH ABSTRACT: We investigate object detection against cluttered backgrounds, based on the MINACE (Minimum Noise and Correlation Energy) filter. Application of the filter is followed by a suitable segmentation algorithm, and the standard techniques of global and local thresholding are compared to watershed-based segmentation. The aim of this approach is to provide a custom region-based object detection algorithm with a concise set of regions of interest. Two industrial case studies are examined: diamond detection in X-ray images, and the reading of a dynamic, and ink stamped, 2D barcode on packaging clutter. We demonstrate the robustness of our approach on these two diverse applications, and develop a complete algorithmic prototype for an automatic stamped code reader.
AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die herkenning van voorwerpe teen onduidelike agtergronde. Ons benadering maak staat op die MINACE (" Minimum Noise and Correlation Energy") korrelasiefilter. Die filter word aangewend saam met 'n gepaste segmenteringsalgoritme, en die standaard tegnieke van globale en lokale drumpelingsalgoritmes word vergelyk met 'n waterskeidingsgebaseerde segmenteringsalgoritme. Die doel van hierdie deteksiebenadering is om 'n klein stel moontlike voorwerpe te kan verskaf aan enige klassifikasie-algoritme wat fokus op die voorwerpe self. Twee industriële toepassings word ondersoek: die opsporing van diamante in X-straal beelde, en die lees van 'n dinamiese, inkgedrukte, 2D balkieskode op verpakkingsmateriaal. Ons demonstreer die robuustheid van ons benadering met hierdie twee uiteenlopende voorbeelde, en ontwikkel 'n volledige algoritmiese prototipe vir 'n outomatiese stempelkode leser.
Mohan, Anuj 1976. „Robust object detection in images by components“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80554.
Der volle Inhalt der QuelleGrahn, Fredrik, und Kristian Nilsson. „Object Detection in Domain Specific Stereo-Analysed Satellite Images“. Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159917.
Der volle Inhalt der QuellePapageorgiou, Constantine P. „A Trainable System for Object Detection in Images and Video Sequences“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/5566.
Der volle Inhalt der QuelleGonzalez-Garcia, Abel. „Image context for object detection, object context for part detection“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28842.
Der volle Inhalt der QuelleGadsby, David. „Object recognition for threat detection from 2D X-ray images“. Thesis, Manchester Metropolitan University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493851.
Der volle Inhalt der QuelleVi, Margareta. „Object Detection Using Convolutional Neural Network Trained on Synthetic Images“. Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153224.
Der volle Inhalt der QuelleRickert, Thomas D. (Thomas Dale) 1975. „Texture-based statistical models for object detection in natural images“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80570.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 63-65).
by Thomas D. Rickert.
S.B.and M.Eng.
Jangblad, Markus. „Object Detection in Infrared Images using Deep Convolutional Neural Networks“. Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355221.
Der volle Inhalt der QuelleMelcherson, Tim. „Image Augmentation to Create Lower Quality Images for Training a YOLOv4 Object Detection Model“. Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429146.
Der volle Inhalt der QuelleYang, Xingwei. „Shape Based Object Detection and Recognition in Silhouettes and Real Images“. Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/111091.
Der volle Inhalt der QuellePh.D.
Shape is very essential for detecting and recognizing objects. It is robust to illumination, color changes. Human can recognize objects just based on shapes, thus shape based object detection and recognition methods have been popular in many years. Due to problem of segmentation, some researchers have worked on silhouettes instead of real images. The main problem in this area is object recognition and the difficulty is to handle shapes articulation and distortion. Previous methods mainly focus on one to one shape similarity measurement, which ignores context information between shapes. Instead, we utilize graph-transduction methods to reveal the intrinsic relation between shapes on 'shape manifold'. Our methods consider the context information in the dataset, which improves the performance a lot. To better describe the manifold structure, we also propose a novel method to add synthetic data points for densifying data manifold. The experimental results have shown the advantage of the algorithm. Moreover, a novel diffusion process on Tensor Product Graph is carried out for learning better affinities between data. This is also used for shape retrieval, which reaches the best ever results on MPEG-7 dataset. As shapes are important and helpful for object detection and recognition in real images, a lot of methods have used shapes to detect and recognize objects. There are two important parts for shape based methods, model construction and object detection, recognition. Most of the current methods are based on hand selected models, which is helpful but not extendable. To solve this problem, we propose to construct model by shape matching between some silhouettes and one hand decomposed silhouette. This weakly supervised method can be used not only learn the models in one object class, but also transfer the structure knowledge to other classes, which has the similar structure with the hand decomposed silhouette. The other problem is detecting and recognizing objects. A lot of methods search the images by sliding window to detect objects, which can find the global solution but with high complexity. Instead, we use sampling methods to reduce the complexity. The method we utilized is particle filter, which is popular in robot mapping and localization. We modified the standard particle filter to make it suitable for static observations and it is very helpful for object detection. Moreover, The usage of particle filter is extended for solving the jigsaw puzzle problem, where puzzle pieces are square image patches. The proposed method is able to reach much better results than the method with Loopy Belief Propagation.
Temple University--Theses
To, Thang Long Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. „Video object segmentation using phase-base detection of moving object boundaries“. Awarded by:University of New South Wales - Australian Defence Force Academy. School of Information Technology and Electrical Engineering, 2005. http://handle.unsw.edu.au/1959.4/38705.
Der volle Inhalt der QuellePathare, Sneha P. „Detection of black-backed jackal in still images“. Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97023.
Der volle Inhalt der QuelleENGLISH ABSTRACT: In South Africa, black-back jackal (BBJ) predation of sheep causes heavy losses to sheep farmers. Different control measures such as shooting, gin-traps and poisoning have been used to control the jackal population; however, these techniques also kill many harmless animals, as they fail to differentiate between BBJ and harmless animals. In this project, a system is implemented to detect black-backed jackal faces in images. The system was implemented using the Viola-Jones object detection algorithm. This algorithm was originally developed to detect human faces, but can also be used to detect a variety of other objects. The three important key features of the Viola-Jones algorithm are the representation of an image as a so-called ”integral image”, the use of the Adaboost boosting algorithm for feature selection, and the use of a cascade of classifiers to reduce false alarms. In this project, Python code has been developed to extract the Haar-features from BBJ images by acting as a classifier to distinguish between a BBJ and the background. Furthermore, the feature selection is done using the Asymboost instead of the Adaboost algorithm so as to achieve a high detection rate and low false positive rate. A cascade of strong classifiers is trained using a cascade learning algorithm. The inclusion of a special fifth feature Haar feature, adapted to the relative spacing of the jackal’s eyes, improves accuracy further. The final system detects 78% of the jackal faces, while only 0.006% of other image frames are wrongly identified as faces.
AFRIKAANSE OPSOMMING: Swartrugjakkalse veroorsaak swaar vee-verliese in Suid Afrika. Teenmaatreels soos jag, slagysters en vergiftiging word algemeen gebruik, maar is nie selektief genoeg nie en dood dus ook vele nie-teiken spesies. In hierdie projek is ’n stelsel ontwikkel om swartrugjakkals gesigte te vind op statiese beelde. Die Viola-Jones deteksie algoritme, aanvanklik ontwikkel vir die deteksie van mens-gesigte, is hiervoor gebruik. Drie sleutel-aspekte van hierdie algoritme is die voorstelling van ’n beeld deur middel van ’n sogenaamde integraalbeeld, die gebruik van die ”Adaboost” algoritme om gepaste kenmerke te selekteer, en die gebruik van ’n kaskade van klassifiseerders om vals-alarm tempos te verlaag. In hierdie projek is Python kode ontwikkel om die nuttigste ”Haar”-kenmerke vir die deteksie van dié jakkalse te onttrek. Eksperimente is gedoen om die nuttigheid van die ”Asymboost” algoritme met die van die ”Adaboost” algoritme te kontrasteer. ’n Kaskade van klassifiseerders is vir beide van hierdie tegnieke afgerig en vergelyk. Die resultate toon dat die kenmerke wat die ”Asymboost” algoritme oplewer, tot laer vals-alarm tempos lei. Die byvoeging van ’n spesiale vyfde tipe Haar-kenmerk, wat aangepas is by die relatiewe spasieëring van die jakkals se oë, verhoog die akkuraatheid verder. Die uiteindelike stelsel vind 78% van die gesigte terwyl slegs 0.006% ander beeld-raampies verkeerdelik as gesigte geklassifiseer word.
Stigson, Magnus. „Object Tracking Using Tracking-Learning-Detection inThermal Infrared Video“. Thesis, Linköpings universitet, Datorseende, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93936.
Der volle Inhalt der QuellePepik, Bojan [Verfasser], und Bernt [Akademischer Betreuer] Schiele. „Richer object representations for object class detection in challenging real world images / Bojan Pepik. Betreuer: Bernt Schiele“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2016. http://d-nb.info/1081935022/34.
Der volle Inhalt der QuelleSchrider, Christina Da-Wann. „Histogram-based template matching object detection in images with varying brightness and contrast“. Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1224044521.
Der volle Inhalt der QuelleRidge, Douglas John. „Imaging for small object detection“. Thesis, Queen's University Belfast, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295423.
Der volle Inhalt der QuelleTang, Jiayu. „Automatic image annotation and object detection“. Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/265835/.
Der volle Inhalt der QuelleKessi, Louisa. „Unsupervised detection based on spatial relationships : Application for object detection and recognition of colored business document structures“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI068.
Der volle Inhalt der QuelleThis digital revolution introduces new services and new usages in numerous domains. The advent of the digitization of documents and the automatization of their processing constitutes a great cultural and economic revolution. In this context, computer vision provides numerous applications and impacts our daily lives and businesses. Behind computer-vision technology, fundamental concepts, methodologies, and algorithms have been developed worldwide in the last fifty years. Today, computer vision technologies arrive to maturity and become a reality in many domains. Computer-vision systems reach high performance thanks to the large amount of data and the increasing performance of the hardware. Despite the success of computer-vision applications, however, numerous other applications require more research, new methodologies, and novel algorithms. Among the difficult problems encountered in the computer-vision domain, detection remains a challenging task. Detection consists of localizing and recognizing an object in an image. This problem is far more difficult than the problem of recognition alone. Among the numerous applications based on detection, object detection in a natural scene is the most popular application in the computer-vision community. This work is about the detection tasks and its applications
Thakkar, Chintan. „Ventricle slice detection in MRI images using Hough Transform and Object Matching techniques“. [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001815.
Der volle Inhalt der QuelleLi, Guannan. „Locality sensitive modelling approach for object detection, tracking and segmentation in biomedical images“. Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/81399/.
Der volle Inhalt der QuelleThörnberg, Jesper. „Combining RGB and Depth Images for Robust Object Detection using Convolutional Neural Networks“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174137.
Der volle Inhalt der QuelleLiu, Wenye III. „Automatic Detection of Elongated Objects in X-Ray Images of Luggage“. Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/37033.
Der volle Inhalt der QuelleMaster of Science
Maryan, Corey C. „Detecting Rip Currents from Images“. ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/td/2473.
Der volle Inhalt der QuelleYousif, Osama. „Urban Change Detection Using Multitemporal SAR Images“. Doctoral thesis, KTH, Geoinformatik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168216.
Der volle Inhalt der QuelleQC 20150529
Baris, Yuksel. „Automated Building Detection From Satellite Images By Using Shadow Information As An Object Invariant“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614909/index.pdf.
Der volle Inhalt der Quellefirst the vegetation, water and shadow regions are detected from a given satellite image and local directional fuzzy landscapes representing the existence of building are generated from the shadow regions using the direction of illumination obtained from image metadata. For each landscape, foreground (building) and background pixels are automatically determined and a bipartitioning is obtained using a graph-based algorithm, Grabcut. Finally, local results are merged to obtain the final building detection result. Considering performance evaluation results, this approach can be seen as a proof of concept that the shadow is an invariant for a building object and promising detection results can be obtained when even a single invariant for an object is used.
Flasseur, Olivier. „Object detection and characterization from faint signals in images : applications in astronomy and microscopy“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSES042.
Der volle Inhalt der QuelleDetecting and characterizing objects in images in the low signal-to-noise ratio regime is a critical issue in many areas such as astronomy or microscopy. In astronomy, the detection of exoplanets and their characterization by direct imaging from the Earth is a hot topic. A target star and its close environment (hosting potential exoplanets) are observed on short exposures. In microscopy, in-line holography is a cost-effective method for characterizing microscopic objects. Based on the recording of a hologram, it allows a digital focusing in any plane of the imaged 3-D volume. In these two fields, the object detection problem is made difficult by the low contrast between the objects and the nonstationary background of the recorded images.In this thesis, we propose an unsupervised exoplanet detection and characterization algorithm based on the statistical modeling of background fluctuations. The method, based on a modeling of the statistical distribution of patches, captures their spatial covariances. It reaches a performance superior to state-of-the-art techniques on several datasets of the European high-contrast imager SPHERE operating at the Very Large Telescope. It produces statistically grounded and spatially-stationary detection maps in which detections can be performed at a constant probability of false alarm. It also produces photometrically unbiased spectral energy distributions of the detected sources. The use of a statistical model of the data leads to reliable photometric and astrometric accuracies. This methodological framework can be adapted to the detection of spatially-extended patterns in strong structured background, such as the diffraction patterns in holographic microscopy. We also propose robust approaches based on weighting strategies to reduce the influence of the numerous outliers present in real data. We show on holographic videos that the proposed weighting approach achieves a bias/variance tradeoff. In astronomy, the robustness improves the performance of our detection method in particular at close separations where the stellar residuals dominate. Our algorithms are adapted to benefit from the possible spectral diversity of the data, which improves the detection and characterization performance. All the algorithms developed are unsupervised: weighting and/or regularization parameters are estimated in a data-driven fashion. Beyond the applications in astronomy and microscopy, the signal processing methodologies introduced are general and could be applied to other detection and estimation problems
Aytar, Yusuf. „Transfer learning for object category detection“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:c9e18ff9-df43-4f67-b8ac-28c3fdfa584b.
Der volle Inhalt der QuelleAndersson, Daniel. „Automatic vertebrae detection and labeling in sagittal magnetic resonance images“. Thesis, Linköpings universitet, Medicinsk informatik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-115874.
Der volle Inhalt der QuelleRadiologer får bara mindre och mindre tid för att utföra sina arbetsuppgifter, då arbetsbördan bara blir större. Ett picture archiving and communication system (PACS) är en platform där radiologer kan undersöka medicinska bilder, däribland magnetic resonance (MR) bilder av ryggraden. När radiologerna tittar på dessa bilder av ryggraden vill de att kotorna ska vara markerade med sina namn, och i Sectra's PACS platform finns det en bra möjlighet för att implementera en automatisk metod för att namnge ryggradens kotor på bilden. I detta examensarbete presenteras en metod för att automatiskt markera alla kotorna utifrån saggitala MR bilder. Denna metod kan göra så att radiologer inte längre behöver manuellt markera kotor, och den skulle kunna implementeras i Sectra's PACS för att förbättra radiologernas arbetsmiljö. Det som menas med att markera kotor är att man ger mitten av alla kotor ett namn utifrån en MR bild på ryggraden. Metoden som presenteras i detta arbete kan utföra detta med hjälp av ett "machine learning" arbetssätt. Metoden fungerar både för övre och nedre delen av ryggraden, men den är optimerad för den nedre delen. Under utvecklingsfasen var tre olika metoder för att detektera kotor evaluerade. Resultatet från detektionen är sedan använt för att namnge alla kotor med hjälp av en algoritm baserad på pictorial structures, som använder en tränad model för att kunna evaluera vad som bör anses vara korrekt namngivning. Metoden uppnår 99.6% recall och 99.9% precision för nedre ryggraden. För övre ryggraden uppnås något sämre resultat, med 98.1% vad gäller både recall och precision. Detta resultat uppnådes då metoden tränades på 43 bilder och validerades på 89 bilder för nedre ryggraden. För övre ryggraden användes 26 stycken bilder. Resultaten är lovande, speciellt för den nedre delen. Dock måste ytterligare utvärdering göras för metoden i en klinisk miljö.
Gandhi, Tarak L. „Image sequence analysis for object detection and segmentation“. Adobe Acrobat reader required to view the full dissertation, 2000. http://www.etda.libraries.psu.edu/theses/approved/PSUonlyIndex/ETD-18/index.html.
Der volle Inhalt der QuelleSilva, Filho José Grimaldo da. „Multiscale spectral residue for faster image object detection“. reponame:Repositório Institucional da UFBA, 2013. http://www.repositorio.ufba.br/ri/handle/ri/13203.
Der volle Inhalt der QuelleApproved for entry into archive by LIVIA FREITAS(livia.freitas@ufba.br) on 2013-10-11T19:14:00Z (GMT) No. of bitstreams: 1 dissertacao_mestrado_jose-grimaldo.pdf: 19406681 bytes, checksum: d108855fa0fb0d44ee5d1cb59579a04c (MD5)
Made available in DSpace on 2013-10-11T19:14:00Z (GMT). No. of bitstreams: 1 dissertacao_mestrado_jose-grimaldo.pdf: 19406681 bytes, checksum: d108855fa0fb0d44ee5d1cb59579a04c (MD5)
Accuracy in image object detection has been usually achieved at the expense of much computational load. Therefore a trade-o between detection performance and fast execution commonly represents the ultimate goal of an object detector in real life applications. Most images are composed of non-trivial amounts of background nformation, such as sky, ground and water. In this sense, using an object detector against a recurring background pattern can require a signi cant amount of the total processing time. To alleviate this problem, search space reduction methods can help focusing the detection procedure on more distinctive image regions. Among the several approaches for search space reduction, we explored saliency information to organize regions based on their probability of containing objects. Saliency detectors are capable of pinpointing regions which generate stronger visual stimuli based solely on information extracted from the image. The fact that saliency methods do not require prior training is an important bene t, which allows application of these techniques in a broad range of machine vision domains. We propose a novel method toward the goal of faster object detectors. The proposed method was grounded on a multi-scale spectral residue (MSR) analysis using saliency detection. For better search space reduction, our method enables ne control of search scale, more robustness to variations on saliency intensity along an object length and also a direct way to control the balance between search space reduction and false negatives caused by region selection. Compared to a regular sliding window search over the images, in our experiments, MSR was able to reduce by 75% (in average) the number of windows to be evaluated by an object detector while improving or at least maintaining detector ROC performance. The proposed method was thoroughly evaluated over a subset of LabelMe dataset (person images), improving detection performance in most cases. This evaluation was done comparing object detection performance against di erent object detectors, with and without MSR. Additionally, we also provide evaluation of how di erent object classes interact with MSR, which was done using Pascal VOC 2007 dataset. Finally, tests made showed that window selection performance of MSR has a good scalability with regard to image size. From the obtained data, our conclusion is that MSR can provide substantial bene ts to existing sliding window detectors.
Salvador
Silva, Filho Jose Grimaldo da. „Multiscale Spectral Residue for Faster Image Object Detection“. Escola Politécnica / Instituto de Matemática, 2013. http://repositorio.ufba.br/ri/handle/ri/21340.
Der volle Inhalt der QuelleApproved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-02-07T11:51:58Z (GMT) No. of bitstreams: 1 dissertacao_mestrado_jose-grimaldo.pdf: 19406681 bytes, checksum: d108855fa0fb0d44ee5d1cb59579a04c (MD5)
Made available in DSpace on 2017-02-07T11:51:58Z (GMT). No. of bitstreams: 1 dissertacao_mestrado_jose-grimaldo.pdf: 19406681 bytes, checksum: d108855fa0fb0d44ee5d1cb59579a04c (MD5)
Accuracy in image object detection has been usually achieved at the expense of much computational load. Therefore a trade-o between detection performance and fast execution commonly represents the ultimate goal of an object detector in real life applications. Most images are composed of non-trivial amounts of background information, such as sky, ground and water. In this sense, using an object detector against a recurring background pattern can require a signi cant amount of the total processing time. To alleviate this problem, search space reduction methods can help focusing the detection procedure on more distinctive image regions.
Among the several approaches for search space reduction, we explored saliency information to organize regions based on their probability of containing objects. Saliency detectors are capable of pinpointing regions which generate stronger visual stimuli based solely on information extracted from the image. The fact that saliency methods do not require prior training is an important benefit, which allows application of these techniques in a broad range of machine vision domains. We propose a novel method toward the goal of faster object detectors. The proposed method was grounded on a multi-scale spectral residue (MSR) analysis using saliency detection. For better search space reduction, our method enables fine control of search scale, more robustness to variations on saliency intensity along an object length and also a direct way to control the balance between search space reduction and false negatives caused by region selection. Compared to a regular sliding window search over the images, in our experiments, MSR was able to reduce by 75% (in average) the number of windows to be evaluated by an object detector while improving or at least maintaining detector ROC performance. The proposed method was thoroughly evaluated over a subset of LabelMe dataset (person images), improving detection performance in most cases. This evaluation was done comparing object detection performance against different object detectors, with and without MSR. Additionally, we also provide evaluation of how different object classes interact with MSR, which was done using Pascal VOC 2007 dataset. Finally, tests made showed that window selection performance of MSR has a good scalability with regard to image size. From the obtained data, our conclusion is that MSR can provide substantial benefits to existing sliding window detectors
Luo, Yuanqing. „Moving Object Detection based on Background Modeling“. Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-230267.
Der volle Inhalt der QuelleDickens, James. „Depth-Aware Deep Learning Networks for Object Detection and Image Segmentation“. Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42619.
Der volle Inhalt der QuelleFasth, Niklas, und Rasmus Hallblad. „Air Reconnaissance Analysis using Convolutional Neural Network-based Object Detection“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48422.
Der volle Inhalt der QuelleRibeiro, Bruno Miguel Marques. „Object detection in robotics using morphological information“. Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2129.
Der volle Inhalt der QuelleUma das componentes mais importantes em sistemas de processamento de imagem é a detecção de objectos de interesse. Contudo, a detecção de objectos é um desafio. Dada uma imagem arbitrária e assumindo que se está interessado em localizar um determinado objecto, o grande objectivo da detecção de objectos passa por determinar se existe ou não qualquer objecto de interesse. Esta tese encontra-se inserida no domínio do RoboCup e foca o desenvolvimento de algoritmos para a detecção de bolas oficiais da FIFA, um objecto importante no futebol robótico. Para atingir o objectivo principal, foram desenvolvidos três algoritmos para detectar bolas de futebol com cores arbitrárias, usando informação morfológica obtida através do detector de cortornos Canny e da tranformada de Hough. Em primeiro lugar, foi desenvolvida uma abordagem onde se implementou um algoritmo específico usando a transformada de Hough circular. Em segundo lugar, foi implementado um algoritmo que utiliza uma função da biblioteca OpenCV dedicada à procura de círculos em imagens. Finalmente, os dois primeiros algoritmos foram agrupados para criar uma nova abordagem, na qual ambos os algoritmos são usados. São apresentados resultados experimentais que mostram que os algoritmos desenvolvidos são precisos, sendo capazes de realizar a detecção da bola de forma confiável em situações de tempo-real. ABSTRACT: One of the most important steps in image processing systems is the detection of objects of interest. However, object detection is a challenging task. Given an arbitrary image and assuming that we are interested in locating a particular object, the goal of object detection is to determine whether or not there is any object of interest. This thesis is inserted in the RoboCup domain and is focused on the development of algorithms for the detection of arbitrary FIFA balls, an important object for soccer robots. To achieve the main objective, we developed three algorithms to detect arbitrary soccer balls using morphological information given by the Canny edge detector and the Hough Transform. First, it was developed an approach where we implemented a specific algorithm using the circular Hough Transform, applied after the segmentation of the acquired image. Secondly, it was implemented an algorithm that uses a function of the OpenCV library dedicated to the search of circles in images. Finally, the two first algorithms were joined to create a new approach in which both of the algorithms are used. Experimental results are presented, showing that the developed algorithms are accurate, being capable of reliable ball detection in real-time situations.
Wälivaara, Marcus. „General Object Detection Using Superpixel Preprocessing“. Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140874.
Der volle Inhalt der QuelleForssén, Per-Erik. „Detection of Man-made Objects in Satellite Images“. Thesis, Linköping University, Linköping University, Computer Vision, 1997. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54356.
Der volle Inhalt der QuelleIn this report, the principles of man-made object detection in satellite images is investigated. An overview of terminology and of how the detection problem is usually solved today is given. A three level system to solve the detection problem is proposed. The main branches of this system handle road, and city detection respectively. To achieve data source flexibility, the Logical Sensor notion is used to model the low level system components. Three Logical Sensors have been implemented and tested on Landsat TM and SPOT XS scenes. These are: BDT (Background Discriminant Transformation) to construct a man-made object property field; Local-orientation for texture estimation and road tracking; Texture estimation using local variance and variance of local orientation. A gradient magnitude measure for road seed generation has also been tested.
Landin, Roman. „Object Detection with Deep Convolutional Neural Networks in Images with Various Lighting Conditions and Limited Resolution“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300055.
Der volle Inhalt der QuelleDatorseende är en nyckelkomponent i alla autonoma system. Applikationer för datorseende i realtid är beroende av en korrekt detektering och klassificering av objekt. En detekteringsalgoritm som inte kan garantera rimlig noggrannhet är inte tillämpningsbar i realtidsscenarier, där huvudmålet är säkerhet. Faktorer som påverkar detekteringsnoggrannheten är belysningförhållanden och bildupplösning. Dessa bidrar till degradering av objekt och leder till låg klassificerings- och detekteringsnoggrannhet. Senaste utvecklingar av Convolutional Neural Networks (CNNs) -baserade algoritmer erbjuder möjligheter för förbättring av bilder med dålig belysning och bildgenerering med superupplösning vilket gör det möjligt att kombinera sådana modeller för att förbättra bildkvaliteten och öka detekteringsnoggrannheten. I denna uppsats utvärderas olika CNN-modeller för superupplösning och förbättring av bilder med dålig belysning genom att jämföra genererade bilder med det faktiska data. För att kvantifiera inverkan av respektive modell på detektionsnoggrannhet utvärderades en detekteringsprocedur på genererade bilder. Experimentella resultat utvärderades på bilder utvalda från NoghtOwls och Caltech datauppsättningar för fotgängare och visade att bildgenerering med superupplösning och bildförbättring i svagt ljus förbättrar noggrannheten med en betydande marginal. Dessutom har det bevisats att en kaskad av superupplösning-generering och förbättring av bilder med dålig belysning ytterligare ökar noggrannheten. Den största nackdelen med sådana kaskader är relaterad till en ökad beräkningstid som begränsar möjligheterna för en rad realtidsapplikationer.
Andersson, Oskar, und Marquez Steffany Reyna. „A comparison of object detection algorithms using unmanipulated testing images : Comparing SIFT, KAZE, AKAZE and ORB“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186503.
Der volle Inhalt der QuelleNyberg, Selma. „Video Recommendation Based on Object Detection“. Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-351122.
Der volle Inhalt der QuellePont, Tuset Jordi. „Image segmentation evaluation and its application to object detection“. Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/134354.
Der volle Inhalt der QuelleSchels, Johannes [Verfasser], und Rainer [Akademischer Betreuer] Lienhart. „Object Class Detection Using Part-Based Models Trained from Synthetically Generated Images / Johannes Schels. Betreuer: Rainer Lienhart“. Augsburg : Universität Augsburg, 2013. http://d-nb.info/1077702655/34.
Der volle Inhalt der QuelleWesterberg, Erik. „AI-based Age Estimation using X-ray Hand Images : A comparison of Object Detection and Deep Learning models“. Thesis, Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19598.
Der volle Inhalt der QuellePresentationen gjordes online via Zoom.
Kaba, Utku. „Moving Hot Object Detection In Airborne Thermal Videos“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614532/index.pdf.
Der volle Inhalt der QuelleZaborowski, Robert Michael. „Onboard and parts-based object detection from aerial imagery“. Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5523.
Der volle Inhalt der QuelleThe almost endless amount of full-motion video (FMV) data collected by Unmanned Aerial Vehicles (UAV) and similar sources presents mounting challenges to human analysts, particularly to their sustained attention to detail despite the monotony of continuous review. This digital deluge of raw imagery also places unsustainable loads on the limited resource of network bandwidth. Automated analysis onboard the UAV allows transmitting only pertinent portions of the imagery, reducing bandwidth usage and mitigating operator fatigue. Further, target detection and tracking information that is immediately available to the UAV facilitates more autonomous operations, with reduced communication needs to the ground station. Experimental results proved the utility of our onboard detection system a) through bandwidth reduction by two orders of magnitude and b) through reduced operator workload. Additionally, a novel parts-based detection method was developed. A whole-object detector is not well suited for deformable and articulated objects, and susceptible to failure due to partial occlusions. Parts detection with a subsequent structural model overcomes these difficulties, is potentially more computationally efficient (smaller resource footprint and able to be decomposed into a hierarchy), and permits reuse for multiple object types. Our parts-based vehicle detector achieved detection accuracy comparable to whole-object detection, yet exhibiting said advantages.
Bergenroth, Hannah. „Use of Thermal Imagery for Robust Moving Object Detection“. Thesis, Linköpings universitet, Medie- och Informationsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177888.
Der volle Inhalt der QuelleExamensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet
Jacobzon, Gustaf. „Multi-site Organ Detection in CT Images using Deep Learning“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279290.
Der volle Inhalt der QuelleVid optimering av en kontrollerad dos inom strålbehandling krävs det information om friska organ, så kallade riskorgan, i närheten av de maligna cellerna för att minimera strålningen i dessa organ. Denna information kan tillhandahållas av djupa volymetriskta segmenteringsnätverk, till exempel 3D U-Net. Begränsningar i minnesstorleken hos moderna grafikkort gör att det inte är möjligt att träna ett volymetriskt segmenteringsnätverk på hela bildvolymen utan att först nedsampla volymen. Detta leder dock till en lågupplöst segmentering av organen som inte är tillräckligt precis för att kunna användas vid optimeringen. Ett alternativ är att endast behandla en intresseregion som innesluter ett eller ett fåtal organ från bildvolymen och träna ett regionspecifikt nätverk på denna mindre volym. Detta tillvägagångssätt kräver dock information om vilket område i bildvolymen som ska skickas till det regionspecifika segmenteringsnätverket. Denna information kan tillhandahållas av ett 3Dobjektdetekteringsnätverk. I regel är även detta nätverk regionsspecifikt, till exempel thorax-regionen, och kräver mänsklig assistans för att välja rätt nätverk för en viss region i kroppen. Vi föreslår istället ett multiregions-detekteringsnätverk baserat påYOLOv3 som kan detektera 43 olika organ och fungerar på godtyckligt valda axiella fönster i kroppen. Vår modell identifierar närvarande organ (hela eller trunkerade) i bilden och kan automatiskt ge information om vilken region som ska behandlas av varje regionsspecifikt segmenteringsnätverk. Vi tränar vår modell på fyra små (så lågt som 20 bilder) platsspecifika datamängder med svag övervakning för att hantera den delvis icke-annoterade egenskapen hos datamängderna. Vår modell genererar en organ-specifik intresseregion för 92 % av organen som finns i testmängden.
Kuchi, Aditi S. „Detection of Sand Boils from Images using Machine Learning Approaches“. ScholarWorks@UNO, 2019. https://scholarworks.uno.edu/td/2618.
Der volle Inhalt der QuelleYigit, Ahmet. „Thermal And Visible Band Image Fusion For Abandoned Object Detection“. Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611720/index.pdf.
Der volle Inhalt der Quelle