Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Object detection in images“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Object detection in images" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Object detection in images"
Shin, Su-Jin, Seyeob Kim, Youngjung Kim und Sungho Kim. „Hierarchical Multi-Label Object Detection Framework for Remote Sensing Images“. Remote Sensing 12, Nr. 17 (24.08.2020): 2734. http://dx.doi.org/10.3390/rs12172734.
Der volle Inhalt der QuelleJung, Sejung, Won Hee Lee und Youkyung Han. „Change Detection of Building Objects in High-Resolution Single-Sensor and Multi-Sensor Imagery Considering the Sun and Sensor’s Elevation and Azimuth Angles“. Remote Sensing 13, Nr. 18 (13.09.2021): 3660. http://dx.doi.org/10.3390/rs13183660.
Der volle Inhalt der QuelleVajda, Peter, Ivan Ivanov, Lutz Goldmann, Jong-Seok Lee und Touradj Ebrahimi. „Robust Duplicate Detection of 2D and 3D Objects“. International Journal of Multimedia Data Engineering and Management 1, Nr. 3 (Juli 2010): 19–40. http://dx.doi.org/10.4018/jmdem.2010070102.
Der volle Inhalt der QuelleSejr, Jonas Herskind, Peter Schneider-Kamp und Naeem Ayoub. „Surrogate Object Detection Explainer (SODEx) with YOLOv4 and LIME“. Machine Learning and Knowledge Extraction 3, Nr. 3 (06.08.2021): 662–71. http://dx.doi.org/10.3390/make3030033.
Der volle Inhalt der QuelleKarimanzira, Divas, Helge Renkewitz, David Shea und Jan Albiez. „Object Detection in Sonar Images“. Electronics 9, Nr. 7 (21.07.2020): 1180. http://dx.doi.org/10.3390/electronics9071180.
Der volle Inhalt der QuelleYan, Longbin, Min Zhao, Xiuheng Wang, Yuge Zhang und Jie Chen. „Object Detection in Hyperspectral Images“. IEEE Signal Processing Letters 28 (2021): 508–12. http://dx.doi.org/10.1109/lsp.2021.3059204.
Der volle Inhalt der QuelleWu, Jingqian, und Shibiao Xu. „From Point to Region: Accurate and Efficient Hierarchical Small Object Detection in Low-Resolution Remote Sensing Images“. Remote Sensing 13, Nr. 13 (03.07.2021): 2620. http://dx.doi.org/10.3390/rs13132620.
Der volle Inhalt der QuelleLorencs, Aivars, Ints Mednieks und Juris Siņica-Siņavskis. „Fast object detection in digital grayscale images“. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 63, Nr. 3 (01.01.2009): 116–24. http://dx.doi.org/10.2478/v10046-009-0026-5.
Der volle Inhalt der QuelleShen, Jie, Zhenxin Xu, Zhe Chen, Huibin Wang und Xiaotao Shi. „Optical Prior-Based Underwater Object Detection with Active Imaging“. Complexity 2021 (27.04.2021): 1–12. http://dx.doi.org/10.1155/2021/6656166.
Der volle Inhalt der QuelleLiu, Wei, Dayu Cheng, Pengcheng Yin, Mengyuan Yang, Erzhu Li, Meng Xie und Lianpeng Zhang. „Small Manhole Cover Detection in Remote Sensing Imagery with Deep Convolutional Neural Networks“. ISPRS International Journal of Geo-Information 8, Nr. 1 (19.01.2019): 49. http://dx.doi.org/10.3390/ijgi8010049.
Der volle Inhalt der QuelleDissertationen zum Thema "Object detection in images"
Kok, R. „An object detection approach for cluttered images“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53281.
Der volle Inhalt der QuelleENGLISH ABSTRACT: We investigate object detection against cluttered backgrounds, based on the MINACE (Minimum Noise and Correlation Energy) filter. Application of the filter is followed by a suitable segmentation algorithm, and the standard techniques of global and local thresholding are compared to watershed-based segmentation. The aim of this approach is to provide a custom region-based object detection algorithm with a concise set of regions of interest. Two industrial case studies are examined: diamond detection in X-ray images, and the reading of a dynamic, and ink stamped, 2D barcode on packaging clutter. We demonstrate the robustness of our approach on these two diverse applications, and develop a complete algorithmic prototype for an automatic stamped code reader.
AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die herkenning van voorwerpe teen onduidelike agtergronde. Ons benadering maak staat op die MINACE (" Minimum Noise and Correlation Energy") korrelasiefilter. Die filter word aangewend saam met 'n gepaste segmenteringsalgoritme, en die standaard tegnieke van globale en lokale drumpelingsalgoritmes word vergelyk met 'n waterskeidingsgebaseerde segmenteringsalgoritme. Die doel van hierdie deteksiebenadering is om 'n klein stel moontlike voorwerpe te kan verskaf aan enige klassifikasie-algoritme wat fokus op die voorwerpe self. Twee industriële toepassings word ondersoek: die opsporing van diamante in X-straal beelde, en die lees van 'n dinamiese, inkgedrukte, 2D balkieskode op verpakkingsmateriaal. Ons demonstreer die robuustheid van ons benadering met hierdie twee uiteenlopende voorbeelde, en ontwikkel 'n volledige algoritmiese prototipe vir 'n outomatiese stempelkode leser.
Mohan, Anuj 1976. „Robust object detection in images by components“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80554.
Der volle Inhalt der QuelleGrahn, Fredrik, und Kristian Nilsson. „Object Detection in Domain Specific Stereo-Analysed Satellite Images“. Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159917.
Der volle Inhalt der QuellePapageorgiou, Constantine P. „A Trainable System for Object Detection in Images and Video Sequences“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/5566.
Der volle Inhalt der QuelleGonzalez-Garcia, Abel. „Image context for object detection, object context for part detection“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28842.
Der volle Inhalt der QuelleGadsby, David. „Object recognition for threat detection from 2D X-ray images“. Thesis, Manchester Metropolitan University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493851.
Der volle Inhalt der QuelleVi, Margareta. „Object Detection Using Convolutional Neural Network Trained on Synthetic Images“. Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153224.
Der volle Inhalt der QuelleRickert, Thomas D. (Thomas Dale) 1975. „Texture-based statistical models for object detection in natural images“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80570.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 63-65).
by Thomas D. Rickert.
S.B.and M.Eng.
Jangblad, Markus. „Object Detection in Infrared Images using Deep Convolutional Neural Networks“. Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355221.
Der volle Inhalt der QuelleMelcherson, Tim. „Image Augmentation to Create Lower Quality Images for Training a YOLOv4 Object Detection Model“. Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429146.
Der volle Inhalt der QuelleBücher zum Thema "Object detection in images"
Bogusław Cyganek. Object Detection and Recognition in Digital Images. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118618387.
Der volle Inhalt der QuelleLee, Chin-Hwa. Similarity counting architecture for object detection. Monterey, California: Naval Postgraduate School, 1986.
Den vollen Inhalt der Quelle findenGeometric constraints for object detection and delineation. Boston: Kluwer Academic Publishers, 2000.
Den vollen Inhalt der Quelle findenWosnitza, Matthias Werner. High precision 1024-point FFT processor for 2D object detection. Hartung-Gorre: Konstanz, 1999.
Den vollen Inhalt der Quelle findenShaikh, Soharab Hossain, Khalid Saeed und Nabendu Chaki. Moving Object Detection Using Background Subtraction. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07386-6.
Der volle Inhalt der QuelleGoulermas, John. Hough transform techniques for circular object detection. Manchester: UMIST, 1996.
Den vollen Inhalt der Quelle findenJiang, Xiaoyue, Abdenour Hadid, Yanwei Pang, Eric Granger und Xiaoyi Feng, Hrsg. Deep Learning in Object Detection and Recognition. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-5152-4.
Der volle Inhalt der QuelleShufelt, Jefferey. Geometric Constraints for Object Detection and Delineation. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-5273-4.
Der volle Inhalt der QuelleNtalias, A. Automated flaw detection in textile images. Manchester: UMIST, 1995.
Den vollen Inhalt der Quelle findenSuk, Minsoo. Three-Dimensional Object Recognition from Range Images. Tokyo: Springer Japan, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Object detection in images"
Topkar, V., B. Kjell und A. Sood. „Object detection in noisy images“. In Active Perception and Robot Vision, 651–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77225-2_34.
Der volle Inhalt der QuelleYavari, Abulfazl, und H. R. Pourreza. „Object Detection in Foveated Images“. In Technological Developments in Networking, Education and Automation, 281–85. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9151-2_49.
Der volle Inhalt der QuelleZiran, Zahra, und Simone Marinai. „Object Detection in Floor Plan Images“. In Artificial Neural Networks in Pattern Recognition, 383–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99978-4_30.
Der volle Inhalt der QuelleKumar, Nitin, Maheep Singh, M. C. Govil, E. S. Pilli und Ajay Jaiswal. „Salient Object Detection in Noisy Images“. In Advances in Artificial Intelligence, 109–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34111-8_15.
Der volle Inhalt der QuelleSchneiderman, Henry. „Learning Statistical Structure for Object Detection“. In Computer Analysis of Images and Patterns, 434–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45179-2_54.
Der volle Inhalt der QuelleKelm, André Peter, Vijesh Soorya Rao und Udo Zölzer. „Object Contour and Edge Detection with RefineContourNet“. In Computer Analysis of Images and Patterns, 246–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29888-3_20.
Der volle Inhalt der QuelleSharma, Raghav, Rohit Pandey und Aditya Nigam. „Real Time Object Detection on Aerial Imagery“. In Computer Analysis of Images and Patterns, 481–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29888-3_39.
Der volle Inhalt der QuelleLecron, Fabian, Mohammed Benjelloun und Saïd Mahmoudi. „Descriptive Image Feature for Object Detection in Medical Images“. In Lecture Notes in Computer Science, 331–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31298-4_39.
Der volle Inhalt der QuelleCai, Qiang, Liwei Wei, Haisheng Li und Jian Cao. „Salient Object Detection Based on RGBD Images“. In Proceedings of 2016 Chinese Intelligent Systems Conference, 437–44. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2335-4_40.
Der volle Inhalt der QuelleKollmitzer, Christian. „Object Detection and Measurement Using Stereo Images“. In Communications in Computer and Information Science, 159–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30721-8_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Object detection in images"
Zhang, Pingping, Wei Liu, Huchuan Lu und Chunhua Shen. „Salient Object Detection by Lossless Feature Reflection“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/160.
Der volle Inhalt der QuelleFelix, Heitor, Francisco Simões, Kelvin Cunha und Veronica Teichrieb. „Image Processing Techniques to Improve Deep 6DoF Detection in RGB Images“. In XXI Symposium on Virtual and Augmented Reality. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/svr_estendido.2019.8457.
Der volle Inhalt der QuelleAyush, Kumar, Burak Uzkent, Marshall Burke, David Lobell und Stefano Ermon. „Generating Interpretable Poverty Maps using Object Detection in Satellite Images“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/608.
Der volle Inhalt der QuelleSaha, Ranajit, Ajoy Mondal und C. V. Jawahar. „Graphical Object Detection in Document Images“. In 2019 International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2019. http://dx.doi.org/10.1109/icdar.2019.00018.
Der volle Inhalt der QuelleLi, Tingtian, und Daniel P. K. Lun. „Salient object detection using array images“. In 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2017. http://dx.doi.org/10.1109/apsipa.2017.8282039.
Der volle Inhalt der QuelleYang, Fan, Heng Fan, Peng Chu, Erik Blasch und Haibin Ling. „Clustered Object Detection in Aerial Images“. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. http://dx.doi.org/10.1109/iccv.2019.00840.
Der volle Inhalt der QuelleMedvedeva, Elena. „Moving Object Detection in Noisy Images“. In 2019 8th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2019. http://dx.doi.org/10.1109/meco.2019.8760066.
Der volle Inhalt der QuelleKwan, Chiman, Bryan Chou, David Gribben, Leif Hagen, Jerry Yang, Bulent Ayhan und Krzysztof Koperski. „Ground object detection in worldview images“. In Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, herausgegeben von Lynne L. Grewe, Erik P. Blasch und Ivan Kadar. SPIE, 2019. http://dx.doi.org/10.1117/12.2518529.
Der volle Inhalt der QuelleOrellana, Sonny, Lei Zhao, Helen Boussalis, Charles Liu, Khosrow Rad und Jane Dong. „Automated object detection for astronomical images“. In Optics East 2005, herausgegeben von Anthony Vetro, Chang Wen Chen, C. C. J. Kuo, Tong Zhang, Qi Tian und John R. Smith. SPIE, 2005. http://dx.doi.org/10.1117/12.631033.
Der volle Inhalt der QuelleWang, Jinwang, Wen Yang, Haowen Guo, Ruixiang Zhang und Gui-Song Xia. „Tiny Object Detection in Aerial Images“. In 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9413340.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Object detection in images"
Repperger, Daniel W., Alan R. Pinkus, Julie A. Skipper und Christina D. Schrider. Stochastic Resonance Investigation of Object Detection in Images. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2006. http://dx.doi.org/10.21236/ada472478.
Der volle Inhalt der QuelleHeisele, Bernd, Thomas Serre, Sayan Mukherjee und Tomaso Poggio. Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images. Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada458821.
Der volle Inhalt der QuelleGastelum, Zoe, und Timothy Shead. How Low Can You Go? Using Synthetic 3D Imagery to Drastically Reduce Real-World Training Data for Object Detection. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1670874.
Der volle Inhalt der QuelleClausen, Jay, Susan Frankenstein, Jason Dorvee, Austin Workman, Blaine Morriss, Keran Claffey, Terrance Sobecki et al. Spatial and temporal variance of soil and meteorological properties affecting sensor performance—Phase 2. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41780.
Der volle Inhalt der QuelleWorkman, Austin, und Jay Clausen. Meteorological property and temporal variable effect on spatial semivariance of infrared thermography of soil surfaces for detection of foreign objects. Engineer Research and Development Center (U.S.), Juni 2021. http://dx.doi.org/10.21079/11681/41024.
Der volle Inhalt der QuelleShah, Jayant. Object Oriented Segmentation of Images. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1994. http://dx.doi.org/10.21236/ada290792.
Der volle Inhalt der QuelleYan, Yujie, und Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, Mai 2021. http://dx.doi.org/10.17760/d20410114.
Der volle Inhalt der QuelleJain, Ramesh. Object Recognition in Range Images Using CAD Databases. Fort Belvoir, VA: Defense Technical Information Center, Juli 1991. http://dx.doi.org/10.21236/ada239326.
Der volle Inhalt der QuelleOwens, Jason. Object Detection using the Kinect. Fort Belvoir, VA: Defense Technical Information Center, März 2012. http://dx.doi.org/10.21236/ada564736.
Der volle Inhalt der QuelleAufderheide, M., A. Barty, S. Lehman, B. Kozioziemski und D. Schneberk. Phase Effects on Mesoscale Object X-ray Absorption Images. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/15014410.
Der volle Inhalt der Quelle