Zeitschriftenartikel zum Thema „O3-type layered oxide cathode“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "O3-type layered oxide cathode" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Nguyen Le, Minh, Hoang Nguyen Van, Trang Bach Le Thuy, Man Tran Van und Phung Le My Loan. „O3-type layered Ni-rich cathode: synthesis and electrochemical characterization“. Vietnam Journal of Catalysis and Adsorption 10, Nr. 1S (15.10.2021): 206–11. http://dx.doi.org/10.51316/jca.2021.123.
Der volle Inhalt der QuelleHwang, Jang-Yeon, Seung-Taek Myung, Ji Ung Choi, Chong Seung Yoon, Hitoshi Yashiro und Yang-Kook Sun. „Correction: Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries“. Journal of Materials Chemistry A 6, Nr. 8 (2018): 3754. http://dx.doi.org/10.1039/c8ta90016g.
Der volle Inhalt der QuelleYu, Tae-Yeon, Seong-Eun Park und Yang-Kook Sun. „Improving Structural and Chemical Stability of O3-Type Sodium Layered Oxide Cathode Via Fluorination“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 762. http://dx.doi.org/10.1149/ma2023-024762mtgabs.
Der volle Inhalt der QuelleJia, Min, Yu Qiao, Xiang Li, Kezhu Jiang und Haoshen Zhou. „Unraveling the anionic oxygen loss and related structural evolution within O3-type Na layered oxide cathodes“. Journal of Materials Chemistry A 7, Nr. 35 (2019): 20405–13. http://dx.doi.org/10.1039/c9ta06186j.
Der volle Inhalt der QuelleZhang, Xueping, Kezhu Jiang, Shaohua Guo, Xiaowei Mu, Xiaoyu Zhang, Ping He, Min Han und Haoshen Zhou. „Exploring a high capacity O3-type cathode for sodium-ion batteries and its structural evolution during an electrochemical process“. Chemical Communications 54, Nr. 86 (2018): 12167–70. http://dx.doi.org/10.1039/c8cc05888a.
Der volle Inhalt der QuelleOmenya, Fredrick, Xiaolin Li und David Reed. „(Invited) Insights into the Effects of Doping on Structural Phase Evolution of Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries“. ECS Meeting Abstracts MA2023-01, Nr. 5 (28.08.2023): 939. http://dx.doi.org/10.1149/ma2023-015939mtgabs.
Der volle Inhalt der QuelleMa, Xiaobai, Hao Guo, Jianxiang Gao, Xufeng Hu, Zhengyao Li, Kai Sun und Dongfeng Chen. „Manipulating of P2/O3 Composite Sodium Layered Oxide Cathode through Ti Substitution and Synthesis Temperature“. Nanomaterials 13, Nr. 8 (12.04.2023): 1349. http://dx.doi.org/10.3390/nano13081349.
Der volle Inhalt der QuelleSong, Tengfei, Lin Chen, Dominika Gastol, Bo DONG, José F. Marco, Frank J. Berry, Peter R. Slater, Daniel Reed und Emma Kendrick. „Realization High-Voltage Stabilization of O3-Type Layered Oxide Cathodes for Sodium-Ion Batteries by Sn Simultaneously Dual Modification“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 718. http://dx.doi.org/10.1149/ma2023-024718mtgabs.
Der volle Inhalt der QuelleKumar, Bachu Sravan, Anagha Pradeep, Animesh Dutta und Amartya Mukhopadhyay. „‘Aqueous Processed’ O3-Type Transition Metal Oxide Cathodes Enabling Long-Term Cyclic Stability for Na-Ion Batteries“. ECS Meeting Abstracts MA2022-02, Nr. 4 (09.10.2022): 502. http://dx.doi.org/10.1149/ma2022-024502mtgabs.
Der volle Inhalt der QuelleMakhubela, Precious, Raesibe Ledwaba, Kenneth Kgatwane und Phuti Ngoepe. „Structural properties of P2 and O2-type layered lithium manganese oxides as potential coating materials“. MATEC Web of Conferences 388 (2023): 07011. http://dx.doi.org/10.1051/matecconf/202338807011.
Der volle Inhalt der QuelleYang, Julia H., Haegyeom Kim und Gerbrand Ceder. „Insights into Layered Oxide Cathodes for Rechargeable Batteries“. Molecules 26, Nr. 11 (26.05.2021): 3173. http://dx.doi.org/10.3390/molecules26113173.
Der volle Inhalt der QuelleMorozov, Anatolii V., Aleksandra A. Savina, Anton O. Boev, Evgeny V. Antipov und Artem M. Abakumov. „Li-based layered nickel–tin oxide obtained through electrochemically-driven cation exchange“. RSC Advances 11, Nr. 46 (2021): 28593–601. http://dx.doi.org/10.1039/d1ra05246b.
Der volle Inhalt der QuelleKawai, Kosuke, Xiang-Mei Shi, Norio Takenaka, Jeonguk Jang, Mortemard de Boisse Benoit, Akihisa Tsuchimoto, Daisuke Asakura et al. „Peroxide Formation for Voltage Hysteresis in O2-Type Lithium-Rich Layered Oxides“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 490. http://dx.doi.org/10.1149/ma2023-012490mtgabs.
Der volle Inhalt der QuelleTripathi, Abhinav, Ashish Rudola, Satyanarayana Reddy Gajjela, Shibo Xi und Palani Balaya. „Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries“. Journal of Materials Chemistry A 7, Nr. 45 (2019): 25944–60. http://dx.doi.org/10.1039/c9ta08991h.
Der volle Inhalt der QuelleYang, Tingting, und Zijia Yin. „Probing the Structure Evolution of Na-Cu-Mn-O Based Layered Oxide Cathode Materials in Sodium Ion Batteries“. ECS Meeting Abstracts MA2023-02, Nr. 65 (22.12.2023): 3108. http://dx.doi.org/10.1149/ma2023-02653108mtgabs.
Der volle Inhalt der QuelleLiu, Haodong, Jing Xu, Chuze Ma und Ying Shirley Meng. „A new O3-type layered oxide cathode with high energy/power density for rechargeable Na batteries“. Chemical Communications 51, Nr. 22 (2015): 4693–96. http://dx.doi.org/10.1039/c4cc09760b.
Der volle Inhalt der QuelleYu, Tae-Yeon, Geumjae Han und Yang-Kook Sun. „Enabling High-Voltage Cycling of O3-Type Sodium Layered Oxide Cathode Via Ca-Substitution“. ECS Meeting Abstracts MA2021-01, Nr. 6 (30.05.2021): 362. http://dx.doi.org/10.1149/ma2021-016362mtgabs.
Der volle Inhalt der QuelleYu, Tae-Yeon, und Yang-Kook Sun. „The Capacity Fading Mechanism of O3-Type Layered Oxide Cathode for Sodium-Ion Batteries“. ECS Meeting Abstracts MA2021-01, Nr. 6 (30.05.2021): 361. http://dx.doi.org/10.1149/ma2021-016361mtgabs.
Der volle Inhalt der QuelleXiao, Yao, Tao Wang, Yan-Fang Zhu, Hai-Yan Hu, Shuang-Jie Tan, Shi Li, Peng-Fei Wang et al. „Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery“. Research 2020 (19.10.2020): 1–16. http://dx.doi.org/10.34133/2020/1469301.
Der volle Inhalt der QuelleFang, Liang, Mingzhe Chen, Kyung-Wan Nam und Yong-Mook Kang. „Redox Evolution of Li-Rich Layered Cathode Materials“. Batteries 8, Nr. 10 (21.09.2022): 132. http://dx.doi.org/10.3390/batteries8100132.
Der volle Inhalt der QuelleYu, Yang, De Ning, Qingyuan Li, Alexandra Franz, Lirong Zheng, Nian Zhang, Guoxi Ren, Gerhard Schumacher und Xiangfeng Liu. „Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries“. Energy Storage Materials 38 (Juni 2021): 130–40. http://dx.doi.org/10.1016/j.ensm.2021.03.004.
Der volle Inhalt der QuellePohle, Björn, Mikhail V. Gorbunov, Qiongqiong Lu, Amin Bahrami, Kornelius Nielsch und Daria Mikhailova. „Structural and Electrochemical Properties of Layered P2-Na0.8Co0.8Ti0.2O2 Cathode in Sodium-Ion Batteries“. Energies 15, Nr. 9 (05.05.2022): 3371. http://dx.doi.org/10.3390/en15093371.
Der volle Inhalt der QuelleMalovanyy, Sergiy. „CATHODE MATERIALS OF ROCK SALT DERIVATIVE STRUCTURES FOR SODIUM-ION SECONDARY POWER SOURCES“. Ukrainian Chemistry Journal 85, Nr. 9 (16.10.2019): 44–57. http://dx.doi.org/10.33609/0041-6045.85.9.2019.44-57.
Der volle Inhalt der QuelleGayara, R. A. Harindi, Buzaina Moossa, R. A. Shakoor, Rana Faisal Shahzad, Muhammad Sajjad, Nirpendra Singh, Shahid Rasul und Talal Mohammed Al tahtamouni. „Cost-effective microwave-assisted O3- type sodium-based layered oxide cathode materials for sodium-ion batteries“. Energy Reports 10 (November 2023): 837–49. http://dx.doi.org/10.1016/j.egyr.2023.07.038.
Der volle Inhalt der QuelleYadav, Jaya, Sai Pranav Vanam, Baskar Senthilkumar, Penphitcha Amonpattaratkit und Prabeer Barpanda. „Manganese-Based Tunnel and Layered Oxide Cathodes for Secondary Alkali-Ion Batteries“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 723. http://dx.doi.org/10.1149/ma2023-024723mtgabs.
Der volle Inhalt der QuellePeng, Jiali, und Sylvio Indris. „Insights into P-Type Iron- and Manganese-Based Layered Sodium Cathodes“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 816. http://dx.doi.org/10.1149/ma2023-024816mtgabs.
Der volle Inhalt der QuelleYu, Lianzheng, Zhiwei Cheng, Kang Xu, Yu-Xin Chang, Yi-Hu Feng, Duo Si, Mengting Liu, Peng-Fei Wang und Sailong Xu. „Interlocking biphasic chemistry for high-voltage P2/O3 sodium layered oxide cathode“. Energy Storage Materials 50 (September 2022): 730–39. http://dx.doi.org/10.1016/j.ensm.2022.06.012.
Der volle Inhalt der QuelleKendrick, Emma. „(Invited) Designing Sustainable Battery Technologies“. ECS Meeting Abstracts MA2023-02, Nr. 1 (22.12.2023): 76. http://dx.doi.org/10.1149/ma2023-02176mtgabs.
Der volle Inhalt der QuelleDeng, Jianqiu, Wen-Bin Luo, Xiao Lu, Qingrong Yao, Zhongmin Wang, Hua-Kun Liu, Huaiying Zhou und Shi-Xue Dou. „High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode“. Advanced Energy Materials 8, Nr. 5 (09.10.2017): 1701610. http://dx.doi.org/10.1002/aenm.201701610.
Der volle Inhalt der QuelleYang, Jun, Manjing Tang, Hao Liu, Xueying Chen, Zhanwei Xu, Jianfeng Huang, Qingmei Su und Yongyao Xia. „O3‐Type Layered Ni‐Rich Oxide: A High‐Capacity and Superior‐Rate Cathode for Sodium‐Ion Batteries“. Small 15, Nr. 52 (Dezember 2019): 1905311. http://dx.doi.org/10.1002/smll.201905311.
Der volle Inhalt der QuelleSengupta, Abhinanda, Ajit Kumar, Aakash Ahuja, Harshita Lohani, Pratima Kumari und Abhinanda Sengupta. „Co-Free Heteroatom-Doped P2-Type Layered Oxide Cathodes: Advancing High Power Sodium-Ion Battery Technology“. ECS Meeting Abstracts MA2023-02, Nr. 65 (22.12.2023): 3095. http://dx.doi.org/10.1149/ma2023-02653095mtgabs.
Der volle Inhalt der QuelleHwang, Jang-Yeon, Seung-Taek Myung, Ji Ung Choi, Chong Seung Yoon, Hitoshi Yashiro und Yang-Kook Sun. „Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries“. Journal of Materials Chemistry A 5, Nr. 45 (2017): 23671–80. http://dx.doi.org/10.1039/c7ta08443a.
Der volle Inhalt der QuelleXie, Zhi-Yu, Xuanxuan Xing, Lianzheng Yu, Yu-Xin Chang, Ya-Xia Yin, Li Xu, Mengmeng Yan und Sailong Xu. „Mg/Ti doping co-promoted high-performance P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 for sodium-ion batteries“. Applied Physics Letters 121, Nr. 20 (14.11.2022): 203903. http://dx.doi.org/10.1063/5.0121824.
Der volle Inhalt der QuelleZuo, Wenhua, Guiliang Xu und Khalil Amine. „The Air Stability of Sodium Layered Oxide Cathodes“. ECS Meeting Abstracts MA2022-02, Nr. 7 (09.10.2022): 2594. http://dx.doi.org/10.1149/ma2022-0272594mtgabs.
Der volle Inhalt der QuelleYue, Ji-Li, Yong-Ning Zhou, Xiqian Yu, Seong-Min Bak, Xiao-Qing Yang und Zheng-Wen Fu. „O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries“. Journal of Materials Chemistry A 3, Nr. 46 (2015): 23261–67. http://dx.doi.org/10.1039/c5ta05769h.
Der volle Inhalt der QuelleDu, Leilei, Xu Hou, Debbie Berghus, Richard Schmuch, Martin Winter, Jie Li und Tobias Placke. „Failure Mechanism of LiNi0.6Co0.2Mn0.2O2 Cathodes in Aqueous/Non-Aqueous Hybrid Electrolytes“. ECS Meeting Abstracts MA2022-01, Nr. 55 (07.07.2022): 2276. http://dx.doi.org/10.1149/ma2022-01552276mtgabs.
Der volle Inhalt der QuelleKang, Jin-Wei, und Han-Yi Chen. „Cation-Modified Anionic Redox Mechanism for High-Performance Layered Oxide As Sodium-Ion Batteries Cathode Material“. ECS Meeting Abstracts MA2022-01, Nr. 3 (07.07.2022): 490. http://dx.doi.org/10.1149/ma2022-013490mtgabs.
Der volle Inhalt der QuelleShipitsyn, Vadim, Rishivandhiga Jayakumar, Wenhua Zuo, Bing Sun und Lin Ma. „Understanding High-Voltage Behavior of Sodium-Ion Battery Cathode Materials Using Synchrotron X-ray and Neutron Techniques: A Review“. Batteries 9, Nr. 9 (11.09.2023): 461. http://dx.doi.org/10.3390/batteries9090461.
Der volle Inhalt der QuelleHwang, Jang-Yeon, Seung-Taek Myung und Yang-Kook Sun. „Quaternary Transition Metal Oxide Layered Framework: O3-Type Na[Ni0.32Fe0.13Co0.15Mn0.40]O2 Cathode Material for High-Performance Sodium-Ion Batteries“. Journal of Physical Chemistry C 122, Nr. 25 (10.03.2018): 13500–13507. http://dx.doi.org/10.1021/acs.jpcc.7b12140.
Der volle Inhalt der QuelleZhang, Qi, Qin-Fen Gu, Yang Li, Hai-Ning Fan, Wen-Bin Luo, Hua Kun Liu und Shi-Xue Dou. „Surface Stabilization of O3-type Layered Oxide Cathode to Protect the Anode of Sodium Ion Batteries for Superior Lifespan“. iScience 19 (September 2019): 244–54. http://dx.doi.org/10.1016/j.isci.2019.07.029.
Der volle Inhalt der QuelleTripathi, Abhinav, Shibo Xi, Satyanarayana Reddy Gajjela und Palani Balaya. „Introducing Na-sufficient P3-Na0.9Fe0.5Mn0.5O2 as a cathode material for Na-ion batteries“. Chemical Communications 56, Nr. 73 (2020): 10686–89. http://dx.doi.org/10.1039/d0cc03701j.
Der volle Inhalt der QuelleWang, Zhaoshun, Yong Wang, Dechao Meng, Qinfeng Zheng, Yixiao Zhang, Feipeng Cai, Di Zhu et al. „High-Capacity O2-Type Layered Oxide Cathode Materials for Lithium-Ion Batteries: Ion-Exchange Synthesis and Electrochemistry“. Journal of The Electrochemical Society 169, Nr. 2 (01.02.2022): 020508. http://dx.doi.org/10.1149/1945-7111/ac4cd5.
Der volle Inhalt der QuelleMukhopadhyay, Amartya. „Designing High-Performance and Water-Stable ‘Layered’ Na- Transition Metal Oxide Cathode Materials for Na-Ion Batteries By Invoking Fundamental Materials-Electrochemical Principles“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 590. http://dx.doi.org/10.1149/ma2023-024590mtgabs.
Der volle Inhalt der QuelleGuo, Hao, Maxim Avdeev, Kai Sun, Xiaobai Ma, Hongliang Wang, Yongsheng Hu und Dongfeng Chen. „Pentanary transition-metals Na-ion layered oxide cathode with highly reversible O3-P3 phase transition“. Chemical Engineering Journal 412 (Mai 2021): 128704. http://dx.doi.org/10.1016/j.cej.2021.128704.
Der volle Inhalt der QuelleKoch, Daniel, und Sergei Manzhos. „First-Principles Study of the Calcium Insertion in Layered and Non-Layered Phases of Vanadia“. MRS Advances 3, Nr. 60 (2018): 3507–12. http://dx.doi.org/10.1557/adv.2018.468.
Der volle Inhalt der QuelleVoronina, Natalia, und Seung-Taek Myung. „Engineering Transition Metal Layers for Long Lasting Anionic Redox in Layered Sodium Manganese Oxide“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 799. http://dx.doi.org/10.1149/ma2023-024799mtgabs.
Der volle Inhalt der QuelleLi, Mengya. „Engineering Routes Towards Practical Sodium-Ion Batteries: Case Studies from Oxides to Polyanion Compounds“. ECS Meeting Abstracts MA2023-01, Nr. 5 (28.08.2023): 913. http://dx.doi.org/10.1149/ma2023-015913mtgabs.
Der volle Inhalt der QuelleYang, Xiaoxia, Suning Wang, Hang Li, Jochi Tseng, Zhonghua Wu, Sylvio Indris, Helmut Ehrenberg, Xiaodong Guo und Weibo Hua. „Unveiling the correlation between structural alterations and enhanced high‐voltage cyclability in Na‐deficient P3‐type layered cathode materials via Li incorporation“. Electron, 12.01.2024. http://dx.doi.org/10.1002/elt2.18.
Der volle Inhalt der QuelleDing, Yuejun, Feixiang Ding, Xiaohui Rong, Yaxiang Lu und Yong-Sheng Hu. „Mg-Doped Layered Oxide Cathode for Na-Ion Batteries“. Chinese Physics B, 07.02.2022. http://dx.doi.org/10.1088/1674-1056/ac523b.
Der volle Inhalt der QuelleLi, Xinghan, Yameng Fan, Bernt Johannessen, Xun Xu, Khay Wai See und Wei Kong Pang. „O3‐Type Cathodes for Sodium‐Ion Batteries: Recent Advancements and Future Perspectives“. Batteries & Supercaps, 22.02.2024. http://dx.doi.org/10.1002/batt.202300618.
Der volle Inhalt der Quelle