Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Numerical optimization and civil aircraft engine noise“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Numerical optimization and civil aircraft engine noise" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Numerical optimization and civil aircraft engine noise"
Chen, Min, Zihao Jia, Hailong Tang, Yi Xiao, Yonghang Yang und Feijia Yin. „Research on Simulation and Performance Optimization of Mach 4 Civil Aircraft Propulsion Concept“. International Journal of Aerospace Engineering 2019 (14.01.2019): 1–19. http://dx.doi.org/10.1155/2019/2918646.
Der volle Inhalt der QuelleMoreau, Antoine, Andrej Prescher, Stephen Schade, Maikhanh Dang, Robert Jaron und Sébastien Guérin. „A framework to simulate and to auralize the sound emitted by aircraft engines“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, Nr. 1 (30.11.2023): 7160–71. http://dx.doi.org/10.3397/in_2023_1073.
Der volle Inhalt der QuelleHe, Sibo, Yimeng Li, Zidong Pu und Wenbo Rao. „Aerodynamic Calculation and Computer Numerical Simulation Methods Applied in Jet Engine Research“. Highlights in Science, Engineering and Technology 62 (27.07.2023): 217–27. http://dx.doi.org/10.54097/hset.v62i.10446.
Der volle Inhalt der QuelleIspir, Ali Can, Pedro Miguel Gonçalves und Bayindir H. Saracoglu. „Analysis of a combined cycle propulsion system for STRATOFLY hypersonic vehicle over an extended trajectory“. MATEC Web of Conferences 304 (2019): 03001. http://dx.doi.org/10.1051/matecconf/201930403001.
Der volle Inhalt der QuelleLi, Yejin, Peng Rao, Zhengda Li und Jianliang Ai. „On-Board Parameter Optimization for Space-Based Infrared Air Vehicle Detection Based on ADS-B Data“. Applied Sciences 13, Nr. 12 (08.06.2023): 6931. http://dx.doi.org/10.3390/app13126931.
Der volle Inhalt der QuelleGhinet, Sebastian, Patrick Bouche, Thomas Padois, Olivier Doutres, Tenon Charly Kone, Raymond Panneton und Noureddine Atalla. „Overview of concept designs and results of the New Acoustic Insulation Meta-Material for Aerospace (NAIMMTA) project“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, Nr. 5 (30.11.2023): 3402–13. http://dx.doi.org/10.3397/in_2023_0489.
Der volle Inhalt der QuelleLAFONT, Victor, Delphine SEBBANE, Frank SIMON, Jean-Paul PINACHO und Julien CAILLET. „Feasibility of an acoustic liner applied to a Fenestron: experimentation“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, Nr. 9 (04.10.2024): 2265–76. http://dx.doi.org/10.3397/in_2024_3160.
Der volle Inhalt der QuelleSchloesser, Philipp, Michael Meyer, Martin Schueller, Perez Weigel und Matthias Bauer. „Fluidic actuators for separation control at the engine/wing junction“. Aircraft Engineering and Aerospace Technology 89, Nr. 5 (04.09.2017): 709–18. http://dx.doi.org/10.1108/aeat-01-2017-0013.
Der volle Inhalt der QuelleWang, Ruichen, und Xun Huang. „Sound radiation from semi-infinite elliptical ducts with uniform subsonic jets: An analytical approach“. Journal of the Acoustical Society of America 154, Nr. 4_supplement (01.10.2023): A188—A189. http://dx.doi.org/10.1121/10.0023221.
Der volle Inhalt der QuelleShah, P. N., D. D. Mobed und Z. S. Spakovszky. „A Novel Turbomachinery Air-Brake Concept for Quiet Aircraft“. Journal of Turbomachinery 132, Nr. 4 (26.04.2010). http://dx.doi.org/10.1115/1.3192145.
Der volle Inhalt der QuelleDissertationen zum Thema "Numerical optimization and civil aircraft engine noise"
Ezzine, Mouhamed Mounibe. „Etude de dispositifs passifs et actifs de réduction du bruit d’interaction soufflante–redresseur“. Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0022.
Der volle Inhalt der QuelleTwo approaches to reduce aeroacoustic noise associated with the OGV of aircraft engines have been examined in this thesis. The first relies on passive solutions, using materials such as porous foam and wire mesh to attenuate noise. The effectiveness of these materials has been tested in various configurations, demonstrating a noise reduction capacity of up to 6 dB under certain conditions, although this efficiency may be affected by factors such as flow velocity. The second part of the study focused on active techniques, particularly the use of piezoelectric cells for noise control. These technologies have shown a notable reduction in noise, reaching up to 15 dB in some cases, although noise amplification has been noted in other situations, emphasizing the importance of precise design in the application of these technologies. Finally, numerical optimization of acoustic impedance on aerodynamic profiles was explored, aiming to further reduce noise generated by turbulent flows. This approach identified optimal impedance values, leading to significant noise reductions for certain frequencies. The results suggest that precise selection of acoustic impedance on profile surfaces can be an effective method for minimizing aeroacoustic noise, although profile geometry may influence the results. Overall, these studies highlight the potential of different strategies for aeroacoustic noise reduction, while emphasizing the need for careful application tailored to specific conditions to maximize their effectiveness
Konferenzberichte zum Thema "Numerical optimization and civil aircraft engine noise"
Igor, Egorov N., Kretinin V. Gennady, Leshchenko A. Igor und Kuptzov V. Sergey. „Multi-Objective Robust Optimization of Air Engine Using IOSO Technology“. In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53504.
Der volle Inhalt der QuelleCarnevale, Mauro, Feng Wang und Luca di Mare. „Low Frequency Distortion in Civil Aero-Engine Intake“. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56203.
Der volle Inhalt der QuelleShah, P. N., D. D. Mobed und Z. S. Spakovszky. „A Novel Turbomachinery Air-Brake Concept for Quiet Aircraft“. In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27635.
Der volle Inhalt der QuelleBartelt, Michael, Juan D. Laguna und Joerg R. Seume. „Synthetic Sound Source Generation for Acoustical Measurements in Turbomachines“. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95045.
Der volle Inhalt der QuelleFiorio, M. „Hardware-in-the-loop validation of a sense and avoid system leveraging data fusion between radar and optical sensors for a mini UAV“. In Aeronautics and Astronautics. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902813-16.
Der volle Inhalt der Quelle