Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Numerical linear and multilinear algebra.

Zeitschriftenartikel zum Thema „Numerical linear and multilinear algebra“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Numerical linear and multilinear algebra" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bini, Dario, Marilena Mitrouli, Marc Van Barel und Joab Winkler. „Structured Numerical Linear and Multilinear Algebra: Analysis, Algorithms and Applications“. Linear Algebra and its Applications 502 (August 2016): 1–4. http://dx.doi.org/10.1016/j.laa.2016.03.042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Huang, Zhengge, und Jingjing Cui. „Improved Brauer-type eigenvalue localization sets for tensors with their applications“. Filomat 34, Nr. 14 (2020): 4607–25. http://dx.doi.org/10.2298/fil2014607h.

Der volle Inhalt der Quelle
Annotation:
In this paper, by excluding some sets from the Brauer-type eigenvalue inclusion sets for tensors developed by Bu et al. (Linear Algebra Appl. 512 (2017) 234-248) and Li et al. (Linear and Multilinear Algebra 64 (2016) 727-736), some improved Brauer-type eigenvalue localization sets for tensors are given, which are proved to be much tighter than those put forward by Bu et al. and Li et al. As applications, some new criteria for identifying the nonsingularity of tensors are developed, which are better than some previous results. This fact is illustrated by some numerical examples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sahoo, Satyajit. „On A-numerical radius inequalities for 2 x 2 operator matrices-II“. Filomat 35, Nr. 15 (2021): 5237–52. http://dx.doi.org/10.2298/fil2115237s.

Der volle Inhalt der Quelle
Annotation:
Rout et al. [Linear Multilinear Algebra 2020, DOI: 10.1080/03081087.2020.1810201] presented certain A-numerical radius inequalities for 2x2 operator matrices and further results on A-numerical radius of certain 2x2 operator matrices are obtained by Feki [Hacet. J. Math. Stat., 2020, DOI:10.15672/hujms.730574], very recently. The main goal of this article is to establish certain A-numerical radius equalities for operator matrices. Several new upper and lower bounds for the A-numerical radius of 2 x 2 operator matrices has been proved, where A be the 2 x 2 diagonal operator matrix whose diagonal entries are positive bounded operator A. Further, we prove some refinements of earlier A-numerical radius inequalities for operators.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Khoromskij, B. N. „Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D“. Computational Methods in Applied Mathematics 6, Nr. 2 (2006): 194–220. http://dx.doi.org/10.2478/cmam-2006-0010.

Der volle Inhalt der Quelle
Annotation:
AbstractThe structured tensor-product approximation of multidimensional nonlocal operators by a two-level rank-(r1, . . . , rd) decomposition of related higher-order tensors is proposed and analysed. In this approach, the construction of the desired approximant to a target tensor is a reminiscence of the Tucker-type model, where the canonical components are represented in a fixed (uniform) basis, while the core tensor is given in the canonical format. As an alternative, the multilevel nested canonical decomposition is presented. The complexity analysis of the corresponding multilinear algebra shows an almost linear cost in the one-dimensional problem size. The existence of a low Kronecker rank two-level representation is proven for a class of function-related tensors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Benzi, Michele, und Ru Huang. „Some matrix properties preserved by generalized matrix functions“. Special Matrices 7, Nr. 1 (08.01.2019): 27–37. http://dx.doi.org/10.1515/spma-2019-0003.

Der volle Inhalt der Quelle
Annotation:
Abstract Generalized matrix functions were first introduced in [J. B. Hawkins and A. Ben-Israel, Linear and Multilinear Algebra, 1(2), 1973, pp. 163-171]. Recently, it has been recognized that these matrix functions arise in a number of applications, and various numerical methods have been proposed for their computation. The exploitation of structural properties, when present, can lead to more efficient and accurate algorithms. The main goal of this paper is to identify structural properties of matrices which are preserved by generalized matrix functions. In cases where a given property is not preserved in general, we provide conditions on the underlying scalar function under which the property of interest will be preserved by the corresponding generalized matrix function.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Choi, Yun Sung, Domingo Garcia, Sung Guen Kim und Manuel Maestre. „THE POLYNOMIAL NUMERICAL INDEX OF A BANACH SPACE“. Proceedings of the Edinburgh Mathematical Society 49, Nr. 1 (Februar 2006): 39–52. http://dx.doi.org/10.1017/s0013091502000810.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this paper, we introduce the polynomial numerical index of order $k$ of a Banach space, generalizing to $k$-homogeneous polynomials the ‘classical’ numerical index defined by Lumer in the 1970s for linear operators. We also prove some results. Let $k$ be a positive integer. We then have the following:(i) $n^{(k)}(C(K))=1$ for every scattered compact space $K$.(ii) The inequality $n^{(k)}(E)\geq k^{k/(1-k)}$ for every complex Banach space $E$ and the constant $k^{k/(1-k)}$ is sharp.(iii) The inequalities$$ n^{(k)}(E)\leq n^{(k-1)}(E)\leq\frac{k^{(k+(1/(k-1)))}}{(k-1)^{k-1}}n^{(k)}(E) $$for every Banach space $E$.(iv) The relation between the polynomial numerical index of $c_0$, $l_1$, $l_{\infty}$ sums of Banach spaces and the infimum of the polynomial numerical indices of them.(v) The relation between the polynomial numerical index of the space $C(K,E)$ and the polynomial numerical index of $E$.(vi) The inequality $n^{(k)}(E^{**})\leq n^{(k)}(E)$ for every Banach space $E$.Finally, some results about the numerical radius of multilinear maps and homogeneous polynomials on $C(K)$ and the disc algebra are given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Qi, Liqun, Yimin Wei, Changqing Xu und Tan Zhang. „Linear algebra and multilinear algebra“. Frontiers of Mathematics in China 11, Nr. 3 (06.05.2016): 509–10. http://dx.doi.org/10.1007/s11464-016-0540-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Marcus, Marvin. „Multilinear methods in linear algebra“. Linear Algebra and its Applications 150 (Mai 1991): 41–59. http://dx.doi.org/10.1016/0024-3795(91)90158-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Qi, Liqun, Wenyu Sun und Yiju Wang. „Numerical multilinear algebra and its applications“. Frontiers of Mathematics in China 2, Nr. 4 (Oktober 2007): 501–26. http://dx.doi.org/10.1007/s11464-007-0031-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gentle, James. „Matrix Analysis and Applied Linear Algebra, Numerical Linear Algebra, and Applied Numerical Linear Algebra“. Journal of the American Statistical Association 96, Nr. 455 (September 2001): 1136–37. http://dx.doi.org/10.1198/jasa.2001.s412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Rota, Gian-Carlo. „Linear algebra and group representations, Vol. II, Multilinear algebra and group representations“. Advances in Mathematics 57, Nr. 1 (Juli 1985): 91. http://dx.doi.org/10.1016/0001-8708(85)90107-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ning, Jing, Yajun Xie und Jie Yao. „Efficient Splitting Methods for Solving Tensor Absolute Value Equation“. Symmetry 14, Nr. 2 (15.02.2022): 387. http://dx.doi.org/10.3390/sym14020387.

Der volle Inhalt der Quelle
Annotation:
The tensor absolute value equation is a class of interesting structured multilinear systems. In this article, from the perspective of pure numerical algebra, we first consider a tensor-type successive over-relaxation method (SOR) (called TSOR) and tensor-type accelerated over-relaxation method (AOR) (called TAOR) for solving tensor absolute value equations. Furthermore, one type of preconditioned tensor splitting method is also applied for solving structured multilinear systems. Numerical experiments adequately demonstrate the efficiency of the presented methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Demmel, James W., Michael T. Heath und Henk A. van der Vorst. „Parallel numerical linear algebra“. Acta Numerica 2 (Januar 1993): 111–97. http://dx.doi.org/10.1017/s096249290000235x.

Der volle Inhalt der Quelle
Annotation:
We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of paralled processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illustrate these principles using current architectures and software systems, and by showing how one would implement matrix multiplication. Then, we present direct and iterative algorithms for solving linear systems of equations, linear least squares problems, the symmetric eigenvalue problem, the nonsymmetric eigenvalue problem, and the singular value decomposition. We consider dense, band and sparse matrices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Chen, Huanyin, und Marjan Abdolyousefi. „Generalized Jacobson’s lemma for generalized Drazin inverses“. Filomat 35, Nr. 7 (2021): 2267–75. http://dx.doi.org/10.2298/fil2107267c.

Der volle Inhalt der Quelle
Annotation:
We present new generalized Jacobson?s lemma for generalized Drazin inverses. This extends the main results on g-Drazin inverse of Yan, Zeng and Zhu (Linear & Multilinear Algebra, 68(2020), 81-93).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Stewart, G. W., Tom King, Yves Achdou und Frank Stenger. „Book Review: Numerical linear algebra“. Mathematics of Computation 68, Nr. 225 (01.01.1999): 453–60. http://dx.doi.org/10.1090/s0025-5718-99-01069-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Moradi, Hamid, Shigeru Furuichi und Zahra Heydarbeygi. „New Refinement of the Operator Kantorovich Inequality“. Mathematics 7, Nr. 2 (01.02.2019): 139. http://dx.doi.org/10.3390/math7020139.

Der volle Inhalt der Quelle
Annotation:
We focus on the improvement of operator Kantorovich type inequalities. Among the consequences, we improve the main result of the paper [H.R. Moradi, I.H. Gümüş, Z. Heydarbeygi, A glimpse at the operator Kantorovich inequality, Linear Multilinear Algebra, doi:10.1080/03081087.2018.1441799].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Moafian, F., und Ebrahimi Vishki. „Lie higher derivations on triangular algebras revisited“. Filomat 30, Nr. 12 (2016): 3187–94. http://dx.doi.org/10.2298/fil1612187m.

Der volle Inhalt der Quelle
Annotation:
Motivated by the extensive works of W.-S. Cheung [Linear Multilinear Algebra, 51 (2003), 299-310] and X.F. Qi [Acta Math. Sinica, English Series, 29 (2013), 1007-1018], we present the structure of Lie higher derivations on a triangular algebra explicitly. We then study those conditions under which a Lie higher derivation on a triangular algebra is proper. Our approach provides a direct proof for some known results concerning to the properness of Lie higher derivations on triangular algebras.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Chen, Huanyin, und Marjan Abdolyousefi. „New formulae of the Drazin inverse of anti-triangular complex block matrices“. Filomat 36, Nr. 12 (2022): 4251–64. http://dx.doi.org/10.2298/fil2212251c.

Der volle Inhalt der Quelle
Annotation:
Let E, F ? Cnxn. If EFiE = 0 for all i ? N, we give the explicit representation of the Drazin inverse of the block complex matrix (E I F 0). We thereby solve a wider kind of singular differential equations posed by Campbell [S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear & Multilinear Algebra, 14(1983), 195-198].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Chen, Huanyin, und Abdolyousefi Sheibani. „The group inverse of certain block complex matrices“. Filomat 37, Nr. 10 (2023): 3153–66. http://dx.doi.org/10.2298/fil2310153c.

Der volle Inhalt der Quelle
Annotation:
We present new additive results for the group inverse of block complex matrices. As an application, the representations for the group inverse of a block complex matrix are given. These extend the main results of Ben?tez, Liu and Zhu (Linear Multilinear Algebra, 59(2011), 279-289).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Ballard, Grey, James Demmel, Olga Holtz und Oded Schwartz. „Minimizing Communication in Numerical Linear Algebra“. SIAM Journal on Matrix Analysis and Applications 32, Nr. 3 (Juli 2011): 866–901. http://dx.doi.org/10.1137/090769156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Dongarra, Jack J., und Victor Eijkhout. „Numerical linear algebra algorithms and software“. Journal of Computational and Applied Mathematics 123, Nr. 1-2 (November 2000): 489–514. http://dx.doi.org/10.1016/s0377-0427(00)00400-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Eldén, Lars. „Numerical linear algebra in data mining“. Acta Numerica 15 (Mai 2006): 327–84. http://dx.doi.org/10.1017/s0962492906240017.

Der volle Inhalt der Quelle
Annotation:
Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Kannan, Ravindran, und Santosh Vempala. „Randomized algorithms in numerical linear algebra“. Acta Numerica 26 (01.05.2017): 95–135. http://dx.doi.org/10.1017/s0962492917000058.

Der volle Inhalt der Quelle
Annotation:
This survey provides an introduction to the use of randomization in the design of fast algorithms for numerical linear algebra. These algorithms typically examine only a subset of the input to solve basic problems approximately, including matrix multiplication, regression and low-rank approximation. The survey describes the key ideas and gives complete proofs of the main results in the field. A central unifying idea is sampling the columns (or rows) of a matrix according to their squared lengths.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Bru, Rafael, und Juan Manuel Peña. „Preface: numerical and applied linear algebra“. Advances in Computational Mathematics 35, Nr. 2-4 (06.07.2011): 99–102. http://dx.doi.org/10.1007/s10444-011-9170-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kostlan, Eric. „Complexity theory of numerical linear algebra“. Journal of Computational and Applied Mathematics 22, Nr. 2-3 (Juni 1988): 219–30. http://dx.doi.org/10.1016/0377-0427(88)90402-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Arveson, W. „C*-Algebras and Numerical Linear Algebra“. Journal of Functional Analysis 122, Nr. 2 (Juni 1994): 333–60. http://dx.doi.org/10.1006/jfan.1994.1072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Mastronardi, Nicola, und Sabine Van Huffel. „Numerical linear algebra and its applications“. Numerical Linear Algebra with Applications 12, Nr. 8 (2005): 683. http://dx.doi.org/10.1002/nla.443.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Gonzaga, Clovis Caesar, und Jin Yun Yuan. „Foz2006 numerical linear algebra and optimization“. Numerical Linear Algebra with Applications 15, Nr. 10 (16.06.2008): 887–89. http://dx.doi.org/10.1002/nla.601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Stroch, Joel A., und Christoph Börgers. „Introduction to Numerical Linear Algebra [Bookshelf]“. IEEE Control Systems 44, Nr. 1 (Februar 2024): 79–80. http://dx.doi.org/10.1109/mcs.2023.3329927.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Danchev, Peter, Esther García und Miguel Gómez Lozano. „Decompositions of matrices into potent and square-zero matrices“. International Journal of Algebra and Computation 32, Nr. 02 (31.01.2022): 251–63. http://dx.doi.org/10.1142/s0218196722500126.

Der volle Inhalt der Quelle
Annotation:
In order to find a suitable expression of an arbitrary square matrix over an arbitrary finite commutative ring, we prove that every such matrix is always representable as a sum of a potent matrix and a nilpotent matrix of order at most two when the Jacobson radical of the ring has zero-square. This somewhat extends results of ours in Linear Multilinear Algebra (2022) established for matrices considered on arbitrary fields. Our main theorem also improves on recent results due to Abyzov et al. in Mat. Zametki (2017), Šter in Linear Algebra Appl. (2018) and Shitov in Indag. Math. (2019).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Wang, Xiaoxiao, Chaoqian Li und Yaotang Li. „A Geršgorin-type eigenvalue localization set with n parameters for stochastic matrices“. Open Mathematics 16, Nr. 1 (02.04.2018): 298–310. http://dx.doi.org/10.1515/math-2018-0030.

Der volle Inhalt der Quelle
Annotation:
AbstractA set in the complex plane which involves n parameters in [0, 1] is given to localize all eigenvalues different from 1 for stochastic matrices. As an application of this set, an upper bound for the moduli of the subdominant eigenvalues of a stochastic matrix is obtained. Lastly, we fix n parameters in [0, 1] to give a new set including all eigenvalues different from 1, which is tighter than those provided by Shen et al. (Linear Algebra Appl. 447 (2014) 74-87) and Li et al. (Linear and Multilinear Algebra 63(11) (2015) 2159-2170) for estimating the moduli of subdominant eigenvalues.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Drygas, Hilmar. „Linear sufficiency and some applications in multilinear estimation“. Journal of Multivariate Analysis 16, Nr. 1 (Februar 1985): 71–84. http://dx.doi.org/10.1016/0047-259x(85)90052-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Choudhury, Projesh, Rajesh Kannan und K. Sivakumar. „A note on linear preservers of semipositive and minimally semipositive matrices“. Electronic Journal of Linear Algebra 34 (21.02.2018): 687–94. http://dx.doi.org/10.13001/1081-3810.3864.

Der volle Inhalt der Quelle
Annotation:
Semipositive matrices (matrices that map at least one nonnegative vector to a positive vector) and minimally semipositive matrices (semipositive matrices whose no column-deleted submatrix is semipositive) are well studied in matrix theory. In this short note, the structure of linear maps which preserve the set of all semipositive/minimally semipositive matrices is studied. An open problem is solved, and some ambiguities in the article [J. Dorsey, T. Gannon, N. Jacobson, C.R. Johnson and M. Turnansky. Linear preservers of semi-positive matrices. {\em Linear and Multilinear Algebra}, 64:1853--1862, 2016.] are clarified.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Yang, Lei, Zheng-Hai Huang und Yu-Fan Li. „A Splitting Augmented Lagrangian Method for Low Multilinear-Rank Tensor Recovery“. Asia-Pacific Journal of Operational Research 32, Nr. 01 (Februar 2015): 1540008. http://dx.doi.org/10.1142/s0217595915400084.

Der volle Inhalt der Quelle
Annotation:
This paper studies a recovery task of finding a low multilinear-rank tensor that fulfills some linear constraints in the general settings, which has many applications in computer vision and graphics. This problem is named as the low multilinear-rank tensor recovery problem. The variable splitting technique and convex relaxation technique are used to transform this problem into a tractable constrained optimization problem. Considering the favorable structure of the problem, we develop a splitting augmented Lagrangian method (SALM) to solve the resulting problem. The proposed algorithm is easily implemented and its convergence can be proved under some conditions. Some preliminary numerical results on randomly generated and real completion problems show that the proposed algorithm is very effective and robust for tackling the low multilinear-rank tensor completion problem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Andersson, Mats, Oleg Burdakov, Hans Knutsson und Spartak Zikrin. „Global Search Strategies for Solving Multilinear Least-Squares Problems“. Sultan Qaboos University Journal for Science [SQUJS] 16 (01.04.2012): 12. http://dx.doi.org/10.24200/squjs.vol17iss1pp12-21.

Der volle Inhalt der Quelle
Annotation:
The multilinear least-squares (MLLS) problem is an extension of the linear least-squares problem. The difference is that a multilinear operator is used in place of a matrix-vector product. The MLLS is typically a large-scale problem characterized by a large number of local minimizers. It originates, for instance, from the design of filter networks. We present a global search strategy that allows for moving from one local minimizer to a better one. The efficiency of this strategy is illustrated by the results of numerical experiments performed for some problems related to the design of filter networks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Heo, Jaeseong, und Maria Joiţa. „Corrigendum to ‘A Stinespring type theorem for completely positive multilinear maps on Hilbert C*-modules’ [Linear Multilinear Algebra 67 (2019), 121–140]“. Linear and Multilinear Algebra 67, Nr. 8 (23.05.2019): 1715–16. http://dx.doi.org/10.1080/03081087.2019.1607818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Yoshikawa, Kohei, und Shuichi Kawano. „Multilinear Common Component Analysis via Kronecker Product Representation“. Neural Computation 33, Nr. 10 (16.09.2021): 2853–80. http://dx.doi.org/10.1162/neco_a_01425.

Der volle Inhalt der Quelle
Annotation:
Abstract We consider the problem of extracting a common structure from multiple tensor data sets. For this purpose, we propose multilinear common component analysis (MCCA) based on Kronecker products of mode-wise covariance matrices. MCCA constructs a common basis represented by linear combinations of the original variables that lose little information of the multiple tensor data sets. We also develop an estimation algorithm for MCCA that guarantees mode-wise global convergence. Numerical studies are conducted to show the effectiveness of MCCA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Appa, Gautam, Allan Findlay, Philip E. Gill, Walter Murray und Margaret H. Wright. „Numerical Linear Algebra and Optimization: Volume 1“. Journal of the Operational Research Society 43, Nr. 1 (Januar 1992): 74. http://dx.doi.org/10.2307/2583704.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Higham, Nicholas J., und Theo Mary. „Mixed precision algorithms in numerical linear algebra“. Acta Numerica 31 (Mai 2022): 347–414. http://dx.doi.org/10.1017/s0962492922000022.

Der volle Inhalt der Quelle
Annotation:
Today’s floating-point arithmetic landscape is broader than ever. While scientific computing has traditionally used single precision and double precision floating-point arithmetics, half precision is increasingly available in hardware and quadruple precision is supported in software. Lower precision arithmetic brings increased speed and reduced communication and energy costs, but it produces results of correspondingly low accuracy. Higher precisions are more expensive but can potentially provide great benefits, even if used sparingly. A variety of mixed precision algorithms have been developed that combine the superior performance of lower precisions with the better accuracy of higher precisions. Some of these algorithms aim to provide results of the same quality as algorithms running in a fixed precision but at a much lower cost; others use a little higher precision to improve the accuracy of an algorithm. This survey treats a broad range of mixed precision algorithms in numerical linear algebra, both direct and iterative, for problems including matrix multiplication, matrix factorization, linear systems, least squares, eigenvalue decomposition and singular value decomposition. We identify key algorithmic ideas, such as iterative refinement, adapting the precision to the data, and exploiting mixed precision block fused multiply–add operations. We also describe the possible performance benefits and explain what is known about the numerical stability of the algorithms. This survey should be useful to a wide community of researchers and practitioners who wish to develop or benefit from mixed precision numerical linear algebra algorithms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Ziegel, Eric R., und James E. Gentle. „Numerical Linear Algebra for Applications in Statistics“. Technometrics 41, Nr. 3 (August 1999): 272. http://dx.doi.org/10.2307/1270592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Cowles, Mary Kathryn, James E. Gentle und Kenneth Lange. „Numerical Linear Algebra for Applications in Statistics“. Journal of the American Statistical Association 95, Nr. 450 (Juni 2000): 675. http://dx.doi.org/10.2307/2669416.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Appa, Gautam, und Allan Findlay. „Numerical Linear Algebra and Optimization: Volume 1“. Journal of the Operational Research Society 43, Nr. 1 (Januar 1992): 74–75. http://dx.doi.org/10.1057/jors.1992.12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Martinsson, Per-Gunnar, und Joel A. Tropp. „Randomized numerical linear algebra: Foundations and algorithms“. Acta Numerica 29 (Mai 2020): 403–572. http://dx.doi.org/10.1017/s0962492920000021.

Der volle Inhalt der Quelle
Annotation:
This survey describes probabilistic algorithms for linear algebraic computations, such as factorizing matrices and solving linear systems. It focuses on techniques that have a proven track record for real-world problems. The paper treats both the theoretical foundations of the subject and practical computational issues.Topics include norm estimation, matrix approximation by sampling, structured and unstructured random embeddings, linear regression problems, low-rank approximation, subspace iteration and Krylov methods, error estimation and adaptivity, interpolatory and CUR factorizations, Nyström approximation of positive semidefinite matrices, single-view (‘streaming’) algorithms, full rank-revealing factorizations, solvers for linear systems, and approximation of kernel matrices that arise in machine learning and in scientific computing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Nachaoui, Abdeljalil. „Numerical linear algebra for reconstruction inverse problems“. Journal of Computational and Applied Mathematics 162, Nr. 1 (Januar 2004): 147–64. http://dx.doi.org/10.1016/j.cam.2003.08.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

G., W., und Philippe G. Ciarlet. „Introduction to Numerical Linear Algebra and Optimisation.“ Mathematics of Computation 55, Nr. 191 (Juli 1990): 395. http://dx.doi.org/10.2307/2008817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Sucharov, L. „Numerical linear algebra and optimization, volume 1“. Advances in Engineering Software 14, Nr. 3 (Januar 1992): 237. http://dx.doi.org/10.1016/0965-9978(92)90031-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Codenotti, B., M. Leoncini und G. Resta. „Oracle computations in parallel numerical linear algebra“. Theoretical Computer Science 127, Nr. 1 (Mai 1994): 99–121. http://dx.doi.org/10.1016/0304-3975(94)90102-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Qin, Xiaolan, und Linzhang Lu. „Formulae for the Drazin inverse of elements in a ring“. Filomat 37, Nr. 17 (2023): 5623–39. http://dx.doi.org/10.2298/fil2317623q.

Der volle Inhalt der Quelle
Annotation:
This paper studies additive properties of the Drazin inverse in a ring R. Some necessary and sufficient conditions for the Drazin invertible are given. Furthermore, we derive additive formulae under conditions weaker than those used in some resent papers on the subject. These extend the main results of Wei and Deng (J. Linear Multilinear Algebra, 59(12) (2011) 1319-1329) and Wang et al. (Filomat, 30(2016), 1185-1193)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Taghavi, Ali, Mojtaba Nouri, Mehran Razeghi und Vahid Darvish. „A note on non-linear ∗-Jordan derivations on ∗-algebras“. Mathematica Slovaca 69, Nr. 3 (26.06.2019): 639–46. http://dx.doi.org/10.1515/ms-2017-0253.

Der volle Inhalt der Quelle
Annotation:
Abstract Taghavi et al. in [TAGHAVI, A.—ROHI, H.—DARVISH, V.: Non-linear ∗-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (2016), 426–439] proved that the map Φ: 𝓐 → 𝓐 which satisfies the following condition $$\begin{array}{} \Phi(A\diamond B)=\Phi(A)\diamond B+A\diamond \Phi(B) \end{array} $$ where A ⋄ B = AB+BA* for every A, B ∈ 𝓐 is an additive ∗-derivation. In this short note, we prove that when A is a prime ∗-algebras and Φ: 𝓐 → 𝓐 satisfies the above condition, then Φ is ∗-additive. Moreover, if Φ(iI) is self-adjoint then Φ is derivation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Brusamarello, Rosali, Érica Zancanella Fornaroli und Ednei Aparecido Santulo. „Classification of involutions on finitary incidence algebras“. International Journal of Algebra and Computation 24, Nr. 08 (Dezember 2014): 1085–98. http://dx.doi.org/10.1142/s0218196714500477.

Der volle Inhalt der Quelle
Annotation:
Let X be a connected partially ordered set and let K be a field of characteristic different from 2. We present necessary and sufficient conditions for two involutions on the finitary incidence algebra of X over K, FI (X), to be equivalent in the case when every multiplicative automorphism of FI (X) is inner. To get the classification of involutions we extend the concept of multiplicative automorphism to finitary incidence algebras and prove the Decomposition Theorem of involutions of [Anti-automorphisms and involutions on (finitary) incidence algebras, Linear Multilinear Algebra 60 (2012) 181–188] for finitary incidence algebras.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie