Inhaltsverzeichnis

  1. Dissertationen

Auswahl der wissenschaftlichen Literatur zum Thema „Numerical linear and multilinear algebra“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Numerical linear and multilinear algebra" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Dissertationen zum Thema "Numerical linear and multilinear algebra"

1

Waldherr, Konrad [Verfasser]. "Numerical Linear and Multilinear Algebra in Quantum Control and Quantum Tensor Networks / Konrad Waldherr." München : Verlag Dr. Hut, 2014. http://d-nb.info/1064560601/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lim, Lek-Heng. "Foundations of numerical multilinear algebra : decomposition and approximation of tensors /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Battles, Zachary. "Numerical linear algebra for continuous functions." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427900.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Higham, N. J. "Nearness problems in numerical linear algebra." Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374580.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zounon, Mawussi. "On numerical resilience in linear algebra." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0038/document.

Der volle Inhalt der Quelle
Annotation:
Comme la puissance de calcul des systèmes de calcul haute performance continue de croître, en utilisant un grand nombre de cœurs CPU ou d’unités de calcul spécialisées, les applications hautes performances destinées à la résolution des problèmes de très grande échelle sont de plus en plus sujettes à des pannes. En conséquence, la communauté de calcul haute performance a proposé de nombreuses contributions pour concevoir des applications tolérantes aux pannes. Cette étude porte sur une nouvelle classe d’algorithmes numériques de tolérance aux pannes au niveau de l’application qui ne nécessite pas de ressources supplémentaires, à savoir, des unités de calcul ou du temps de calcul additionnel, en l’absence de pannes. En supposant qu’un mécanisme distinct assure la détection des pannes, nous proposons des algorithmes numériques pour extraire des informations pertinentes à partir des données disponibles après une pannes. Après l’extraction de données, les données critiques manquantes sont régénérées grâce à des stratégies d’interpolation pour constituer des informations pertinentes pour redémarrer numériquement l’algorithme. Nous avons conçu ces méthodes appelées techniques d’Interpolation-restart pour des problèmes d’algèbre linéaire numérique tels que la résolution de systèmes linéaires ou des problèmes aux valeurs propres qui sont indispensables dans de nombreux noyaux scientifiques et applications d’ingénierie. La résolution de ces problèmes est souvent la partie dominante; en termes de temps de calcul, des applications scientifiques. Dans le cadre solveurs linéaires du sous-espace de Krylov, les entrées perdues de l’itération sont interpolées en utilisant les entrées disponibles sur les nœuds encore disponibles pour définir une nouvelle estimation de la solution initiale avant de redémarrer la méthode de Krylov. En particulier, nous considérons deux politiques d’interpolation qui préservent les propriétés numériques clés de solveurs linéaires bien connus, à savoir la décroissance monotone de la norme-A de l’erreur du gradient conjugué ou la décroissance monotone de la norme résiduelle de GMRES. Nous avons évalué l’impact du taux de pannes et l’impact de la quantité de données perdues sur la robustesse des stratégies de résilience conçues. Les expériences ont montré que nos stratégies numériques sont robustes même en présence de grandes fréquences de pannes, et de perte de grand volume de données. Dans le but de concevoir des solveurs résilients de résolution de problèmes aux valeurs propres, nous avons modifié les stratégies d’interpolation conçues pour les systèmes linéaires. Nous avons revisité les méthodes itératives de l’état de l’art pour la résolution des problèmes de valeurs propres creux à la lumière des stratégies d’Interpolation-restart. Pour chaque méthode considérée, nous avons adapté les stratégies d’Interpolation-restart pour régénérer autant d’informations spectrale que possible. Afin d’évaluer la performance de nos stratégies numériques, nous avons considéré un solveur parallèle hybride (direct/itérative) pleinement fonctionnel nommé MaPHyS pour la résolution des systèmes linéaires creux, et nous proposons des solutions numériques pour concevoir une version tolérante aux pannes du solveur. Le solveur étant hybride, nous nous concentrons dans cette étude sur l’étape de résolution itérative, qui est souvent l’étape dominante dans la pratique. Les solutions numériques proposées comportent deux volets. A chaque fois que cela est possible, nous exploitons la redondance de données entre les processus du solveur pour effectuer une régénération exacte des données en faisant des copies astucieuses dans les processus. D’autre part, les données perdues qui ne sont plus disponibles sur aucun processus sont régénérées grâce à un mécanisme d’interpolation<br>As the computational power of high performance computing (HPC) systems continues to increase by using huge number of cores or specialized processing units, HPC applications are increasingly prone to faults. This study covers a new class of numerical fault tolerance algorithms at application level that does not require extra resources, i.e., computational unit or computing time, when no fault occurs. Assuming that a separate mechanism ensures fault detection, we propose numerical algorithms to extract relevant information from available data after a fault. After data extraction, well chosen part of missing data is regenerated through interpolation strategies to constitute meaningful inputs to numerically restart the algorithm. We have designed these methods called Interpolation-restart techniques for numerical linear algebra problems such as the solution of linear systems or eigen-problems that are the inner most numerical kernels in many scientific and engineering applications and also often ones of the most time consuming parts. In the framework of Krylov subspace linear solvers the lost entries of the iterate are interpolated using the available entries on the still alive nodes to define a new initial guess before restarting the Krylov method. In particular, we consider two interpolation policies that preserve key numerical properties of well-known linear solvers, namely the monotony decrease of the A-norm of the error of the conjugate gradient or the residual norm decrease of GMRES. We assess the impact of the fault rate and the amount of lost data on the robustness of the resulting linear solvers.For eigensolvers, we revisited state-of-the-art methods for solving large sparse eigenvalue problems namely the Arnoldi methods, subspace iteration methods and the Jacobi-Davidson method, in the light of Interpolation-restart strategies. For each considered eigensolver, we adapted the Interpolation-restart strategies to regenerate as much spectral information as possible. Through intensive experiments, we illustrate the qualitative numerical behavior of the resulting schemes when the number of faults and the amount of lost data are varied; and we demonstrate that they exhibit a numerical robustness close to that of fault-free calculations. In order to assess the efficiency of our numerical strategies, we have consideredan actual fully-featured parallel sparse hybrid (direct/iterative) linear solver, MaPHyS, and we proposed numerical remedies to design a resilient version of the solver. The solver being hybrid, we focus in this study on the iterative solution step, which is often the dominant step in practice. The numerical remedies we propose are twofold. Whenever possible, we exploit the natural data redundancy between processes from the solver toperform an exact recovery through clever copies over processes. Otherwise, data that has been lost and is not available anymore on any process is recovered through Interpolationrestart strategies. These numerical remedies have been implemented in the MaPHyS parallel solver so that we can assess their efficiency on a large number of processing units (up to 12; 288 CPU cores) for solving large-scale real-life problems
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kannan, Ramaseshan. "Numerical linear algebra problems in structural analysis." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/numerical-linear-algebra-problems-in-structural-analysis(7df0f708-fc12-4807-a1f5-215960d9c4d4).html.

Der volle Inhalt der Quelle
Annotation:
A range of numerical linear algebra problems that arise in finite element-based structural analysis are considered. These problems were encountered when implementing the finite element method in the software package Oasys GSA. We present novel solutions to these problems in the form of a new method for error detection, algorithms with superior numerical effeciency and algorithms with scalable performance on parallel computers. The solutions and their corresponding software implementations have been integrated into GSA's program code and we present results that demonstrate the use of these implementations by engineers to solve real-world structural analysis problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Steele, Hugh Paul. "Combinatorial arguments for linear logic full completeness." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/combinatorial-arguments-for-linear-logic-full-completeness(274c6b87-dc58-4dc3-86bc-8c29abc2fc34).html.

Der volle Inhalt der Quelle
Annotation:
We investigate categorical models of the unit-free multiplicative and multiplicative-additive fragments of linear logic by representing derivations as particular structures known as dinatural transformations. Suitable categories are considered to satisfy a property known as full completeness if all such entities are the interpretation of a correct derivation. It is demonstrated that certain Hyland-Schalk double glueings [HS03] are capable of transforming large numbers of degenerate models into more accurate ones. Compact closed categories with finite biproducts possess enough structure that their morphisms can be described as forms of linear arrays. We introduce the notion of an extended tensor (or ‘extensor’) over arbitrary semirings, and show that they uniquely describe arrows between objects generated freely from the tensor unit in such categories. It is made evident that the concept may be extended yet further to provide meaningful decompositions of more general arrows. We demonstrate how the calculus of extensors makes it possible to examine the combinatorics of certain double glueing constructions. From this we show that the Hyland-Tan version [Tan97], when applied to compact closed categories satisfying a far weaker version of full completeness, produces genuine fully complete models of unit-free multiplicative linear logic. Research towards the development of a full completeness result for the multiplicative-additive fragment is detailed. The proofs work for categories of finite arrays over certain semirings under both the Hyland-Tan and Schalk [Sch04] constructions. We offer a possible route to finishing this proof. An interpretation of these results with respect to linear logic proof theory is provided, and possible further research paths and generalisations are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gulliksson, Rebecka. "A comparison of parallelization approaches for numerical linear algebra." Thesis, Umeå universitet, Institutionen för datavetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-81116.

Der volle Inhalt der Quelle
Annotation:
The efficiency of numerical libraries for a given computation is highly dependent on the size of the inputs. For very small inputs it is expected that LAPACK combined with BLAS is the superior alternative, while the new generation of parallelized numerical libraries (such as PLASMA and SuperMatrix) is expected to be superior for large inputs. In between these two extremes in input sizes, there might exist a niche for a new class of numerical libraries.In this thesis a prototype library, targeting medium sized inputs, is presented. The prototype library uses a mixed data and task parallel approach, with the Static BFS Scheduling of M-tasks (SBSM) algorithm, and provides lightweight scheduling for numerical computations. The aim of the prototype library is to explore the competitiveness of such an approach, compared to the more traditional parallelization approaches (data and task parallelism). The competitiveness is measured in a set of synthetic benchmarks using matrix multiplication as the reference computation.The results show that the prototype library exhibits potential for superseding the performance of today’s libraries for medium sized inputs. To give a conclusive answer as to whether the approach is worth pursuing with large research and development efforts, further investigation of the scheduling algorithm, as well as the numerical computations, should be examined through additional benchmarks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Song, Zixu. "Software engineering abstractions for a numerical linear algebra library." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/software-engineering-abstractions-for-a-numerical-linear-algebra-library(68304a9b-56db-404b-8ffb-4613f5102c1a).html.

Der volle Inhalt der Quelle
Annotation:
This thesis aims at building a numerical linear algebra library with appropriate software engineering abstractions. Three areas of knowledge, namely, Numerical Linear Algebra (NLA), Software Engineering and Compiler Optimisation Techniques, are involved. Numerical simulation is widely used in a large number of distinct disciplines to help scientists understand and discover the world. The solutions to frequently occurring numerical problems have been implemented in subroutines, which were then grouped together to form libraries for ease of use. The design, implementation and maintenance of a NLA library require a great deal of work so that the other two topics, namely, software engineering and compiler optimisation techniques have emerged. Generally speaking, these both try to divide the system into smaller and controllable concerns, and allow the programmer to deal with fewer concerns at one time. Band matrix operation, as a new level of abstraction, is proposed for simplifying library implementation and enhancing extensibility for future functionality upgrades. Iteration Space Partitioning (ISP) is applied, in order to make the performance of this generalised implementation for band matrices comparable to that of the specialised implementations for dense and triangular matrices. The optimisation of ISP can be either programmed using the pointcut-advice model of Aspect-Oriented Programming, or integrated as part of a compiler. This naturally leads to a comparison of these two different techniques for resolving one fundamental problem. The thesis shows that software engineering properties of a library, such as modularity and extensibility, can be improved by the use of the appropriate level of abstraction, while performance is either not sacrificed at all, or at least the loss of performance is limited. In other words, the perceived trade-off between the use of high-level abstraction and fast execution is made less significant than previously assumed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sato, Hiroyuki. "Riemannian Optimization Algorithms and Their Applications to Numerical Linear Algebra." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/180615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie