Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Numerical linear and multilinear algebra“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Numerical linear and multilinear algebra" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Numerical linear and multilinear algebra"
Bini, Dario, Marilena Mitrouli, Marc Van Barel und Joab Winkler. „Structured Numerical Linear and Multilinear Algebra: Analysis, Algorithms and Applications“. Linear Algebra and its Applications 502 (August 2016): 1–4. http://dx.doi.org/10.1016/j.laa.2016.03.042.
Der volle Inhalt der QuelleHuang, Zhengge, und Jingjing Cui. „Improved Brauer-type eigenvalue localization sets for tensors with their applications“. Filomat 34, Nr. 14 (2020): 4607–25. http://dx.doi.org/10.2298/fil2014607h.
Der volle Inhalt der QuelleSahoo, Satyajit. „On A-numerical radius inequalities for 2 x 2 operator matrices-II“. Filomat 35, Nr. 15 (2021): 5237–52. http://dx.doi.org/10.2298/fil2115237s.
Der volle Inhalt der QuelleKhoromskij, B. N. „Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D“. Computational Methods in Applied Mathematics 6, Nr. 2 (2006): 194–220. http://dx.doi.org/10.2478/cmam-2006-0010.
Der volle Inhalt der QuelleBenzi, Michele, und Ru Huang. „Some matrix properties preserved by generalized matrix functions“. Special Matrices 7, Nr. 1 (08.01.2019): 27–37. http://dx.doi.org/10.1515/spma-2019-0003.
Der volle Inhalt der QuelleChoi, Yun Sung, Domingo Garcia, Sung Guen Kim und Manuel Maestre. „THE POLYNOMIAL NUMERICAL INDEX OF A BANACH SPACE“. Proceedings of the Edinburgh Mathematical Society 49, Nr. 1 (Februar 2006): 39–52. http://dx.doi.org/10.1017/s0013091502000810.
Der volle Inhalt der QuelleQi, Liqun, Yimin Wei, Changqing Xu und Tan Zhang. „Linear algebra and multilinear algebra“. Frontiers of Mathematics in China 11, Nr. 3 (06.05.2016): 509–10. http://dx.doi.org/10.1007/s11464-016-0540-0.
Der volle Inhalt der QuelleMarcus, Marvin. „Multilinear methods in linear algebra“. Linear Algebra and its Applications 150 (Mai 1991): 41–59. http://dx.doi.org/10.1016/0024-3795(91)90158-s.
Der volle Inhalt der QuelleQi, Liqun, Wenyu Sun und Yiju Wang. „Numerical multilinear algebra and its applications“. Frontiers of Mathematics in China 2, Nr. 4 (Oktober 2007): 501–26. http://dx.doi.org/10.1007/s11464-007-0031-4.
Der volle Inhalt der QuelleGentle, James. „Matrix Analysis and Applied Linear Algebra, Numerical Linear Algebra, and Applied Numerical Linear Algebra“. Journal of the American Statistical Association 96, Nr. 455 (September 2001): 1136–37. http://dx.doi.org/10.1198/jasa.2001.s412.
Der volle Inhalt der QuelleDissertationen zum Thema "Numerical linear and multilinear algebra"
Waldherr, Konrad [Verfasser]. „Numerical Linear and Multilinear Algebra in Quantum Control and Quantum Tensor Networks / Konrad Waldherr“. München : Verlag Dr. Hut, 2014. http://d-nb.info/1064560601/34.
Der volle Inhalt der QuelleLim, Lek-Heng. „Foundations of numerical multilinear algebra : decomposition and approximation of tensors /“. May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Der volle Inhalt der QuelleBattles, Zachary. „Numerical linear algebra for continuous functions“. Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427900.
Der volle Inhalt der QuelleHigham, N. J. „Nearness problems in numerical linear algebra“. Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374580.
Der volle Inhalt der QuelleZounon, Mawussi. „On numerical resilience in linear algebra“. Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0038/document.
Der volle Inhalt der QuelleAs the computational power of high performance computing (HPC) systems continues to increase by using huge number of cores or specialized processing units, HPC applications are increasingly prone to faults. This study covers a new class of numerical fault tolerance algorithms at application level that does not require extra resources, i.e., computational unit or computing time, when no fault occurs. Assuming that a separate mechanism ensures fault detection, we propose numerical algorithms to extract relevant information from available data after a fault. After data extraction, well chosen part of missing data is regenerated through interpolation strategies to constitute meaningful inputs to numerically restart the algorithm. We have designed these methods called Interpolation-restart techniques for numerical linear algebra problems such as the solution of linear systems or eigen-problems that are the inner most numerical kernels in many scientific and engineering applications and also often ones of the most time consuming parts. In the framework of Krylov subspace linear solvers the lost entries of the iterate are interpolated using the available entries on the still alive nodes to define a new initial guess before restarting the Krylov method. In particular, we consider two interpolation policies that preserve key numerical properties of well-known linear solvers, namely the monotony decrease of the A-norm of the error of the conjugate gradient or the residual norm decrease of GMRES. We assess the impact of the fault rate and the amount of lost data on the robustness of the resulting linear solvers.For eigensolvers, we revisited state-of-the-art methods for solving large sparse eigenvalue problems namely the Arnoldi methods, subspace iteration methods and the Jacobi-Davidson method, in the light of Interpolation-restart strategies. For each considered eigensolver, we adapted the Interpolation-restart strategies to regenerate as much spectral information as possible. Through intensive experiments, we illustrate the qualitative numerical behavior of the resulting schemes when the number of faults and the amount of lost data are varied; and we demonstrate that they exhibit a numerical robustness close to that of fault-free calculations. In order to assess the efficiency of our numerical strategies, we have consideredan actual fully-featured parallel sparse hybrid (direct/iterative) linear solver, MaPHyS, and we proposed numerical remedies to design a resilient version of the solver. The solver being hybrid, we focus in this study on the iterative solution step, which is often the dominant step in practice. The numerical remedies we propose are twofold. Whenever possible, we exploit the natural data redundancy between processes from the solver toperform an exact recovery through clever copies over processes. Otherwise, data that has been lost and is not available anymore on any process is recovered through Interpolationrestart strategies. These numerical remedies have been implemented in the MaPHyS parallel solver so that we can assess their efficiency on a large number of processing units (up to 12; 288 CPU cores) for solving large-scale real-life problems
Kannan, Ramaseshan. „Numerical linear algebra problems in structural analysis“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/numerical-linear-algebra-problems-in-structural-analysis(7df0f708-fc12-4807-a1f5-215960d9c4d4).html.
Der volle Inhalt der QuelleSteele, Hugh Paul. „Combinatorial arguments for linear logic full completeness“. Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/combinatorial-arguments-for-linear-logic-full-completeness(274c6b87-dc58-4dc3-86bc-8c29abc2fc34).html.
Der volle Inhalt der QuelleGulliksson, Rebecka. „A comparison of parallelization approaches for numerical linear algebra“. Thesis, Umeå universitet, Institutionen för datavetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-81116.
Der volle Inhalt der QuelleSong, Zixu. „Software engineering abstractions for a numerical linear algebra library“. Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/software-engineering-abstractions-for-a-numerical-linear-algebra-library(68304a9b-56db-404b-8ffb-4613f5102c1a).html.
Der volle Inhalt der QuelleSato, Hiroyuki. „Riemannian Optimization Algorithms and Their Applications to Numerical Linear Algebra“. 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/180615.
Der volle Inhalt der QuelleBücher zum Thema "Numerical linear and multilinear algebra"
service), SpringerLink (Online, Hrsg. The Linear Algebra a Beginning Graduate Student Ought to Know. 3. Aufl. Dordrecht: Springer Netherlands, 2012.
Den vollen Inhalt der Quelle findenMultilinear algebra. Amsterdam: Gordon and Breach Science Publishers, 1997.
Den vollen Inhalt der Quelle findenNumerical linear algebra. New York, NY: Springer, 2008.
Den vollen Inhalt der Quelle findenReichel, Lothar, Arden Ruttan und Richard S. Varga, Hrsg. Numerical Linear Algebra. Berlin, New York: DE GRUYTER, 1993. http://dx.doi.org/10.1515/9783110857658.
Der volle Inhalt der QuelleAllaire, Grégoire, und Sidi Mahmoud Kaber. Numerical Linear Algebra. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-68918-0.
Der volle Inhalt der QuelleBornemann, Folkmar. Numerical Linear Algebra. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74222-9.
Der volle Inhalt der QuelleDavid, Bau, Hrsg. Numerical linear algebra. Philadelphia: Society for Industrial and Applied Mathematics, 1997.
Den vollen Inhalt der Quelle findenO, Christenson Charles, und Smith Bryan A, Hrsg. Numerical linear algebra. Moscow, Idaho: BCS Associates, 1991.
Den vollen Inhalt der Quelle findenBourhim, A., J. Mashreghi, L. Oubbi und Z. Abdelali, Hrsg. Linear and Multilinear Algebra and Function Spaces. Providence, Rhode Island: American Mathematical Society, 2020. http://dx.doi.org/10.1090/conm/750.
Der volle Inhalt der QuellePetersen, Peter. Linear Algebra. New York, NY: Springer New York, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Numerical linear and multilinear algebra"
Bourbaki, Nicolas. „Linear Algebra and Multilinear Algebra“. In Elements of the History of Mathematics, 57–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-61693-8_4.
Der volle Inhalt der QuelleBullo, Francesco, und Andrew D. Lewis. „Linear and multilinear algebra“. In Texts in Applied Mathematics, 15–48. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/978-1-4899-7276-7_2.
Der volle Inhalt der QuelleHestenes, David, und Garret Sobczyk. „Linear and Multilinear Functions“. In Clifford Algebra to Geometric Calculus, 63–136. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-6292-7_3.
Der volle Inhalt der QuelleLoehr, Nicholas A. „Universal Mapping Problems in Multilinear Algebra“. In Advanced Linear Algebra, 571–606. 2. Aufl. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003484561-20.
Der volle Inhalt der QuelleSerre, Denis. „Elementary Linear and Multilinear Algebra“. In Graduate Texts in Mathematics, 1–14. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7683-3_1.
Der volle Inhalt der QuelleLi, PhD, Haksun. „Linear Algebra“. In Numerical Methods Using Kotlin, 35–139. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8826-9_2.
Der volle Inhalt der QuelleLi, PhD, Haksun. „Linear Algebra“. In Numerical Methods Using Java, 71–206. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-6797-4_2.
Der volle Inhalt der QuelleRobbiano, Lorenzo. „Numerical and Symbolic Computations“. In Linear algebra, 1–6. Milano: Springer Milan, 2011. http://dx.doi.org/10.1007/978-88-470-1839-6_1.
Der volle Inhalt der QuelleGentle, James E. „Numerical Linear Algebra“. In Springer Texts in Statistics, 523–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64867-5_11.
Der volle Inhalt der QuelleČížková, Lenka, und Pavel Čížek. „Numerical Linear Algebra“. In Handbook of Computational Statistics, 105–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21551-3_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Numerical linear and multilinear algebra"
Clarkson, Kenneth L., und David P. Woodruff. „Numerical linear algebra in the streaming model“. In the 41st annual ACM symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1536414.1536445.
Der volle Inhalt der QuelleAmmar, Gregory. „Grassmannians, Riccati equations, and numerical linear algebra“. In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268867.
Der volle Inhalt der QuelleMeier, Ulrike, und Ahmed Sameh. „Numerical Linear Algebra On The CEDAR Multiprocessor“. In 31st Annual Technical Symposium, herausgegeben von Franklin T. Luk. SPIE, 1988. http://dx.doi.org/10.1117/12.942008.
Der volle Inhalt der QuelleVáclavíková, Zuzana, und Ondřej Kolouch. „Linear algebra for students of informatics“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027086.
Der volle Inhalt der QuelleKrake, Tim. „Numerical Linear Algebra for physically-based Fluid Animations“. In SA '19: SIGGRAPH Asia 2019. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3366344.3366445.
Der volle Inhalt der QuelleGeorganas, Evangelos, Jorge Gonzalez-Dominguez, Edgar Solomonik, Yili Zheng, Juan Tourino und Katherine Yelick. „Communication avoiding and overlapping for numerical linear algebra“. In 2012 SC - International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2012. http://dx.doi.org/10.1109/sc.2012.32.
Der volle Inhalt der QuelleWu, Wenyuan, und Greg Reid. „Application of numerical algebraic geometry and numerical linear algebra to PDE“. In the 2006 international symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1145768.1145824.
Der volle Inhalt der QuelleValley, George C., Thomas J. Shaw, Andrew D. Stapleton, Adam C. Scofield, George A. Sefler und Leif Johannson. „Application of laser speckle to randomized numerical linear algebra“. In Optical Data Science: Trends Shaping the Future of Photonics, herausgegeben von Ken-ichi Kitayama, Bahram Jalali und Ata Mahjoubfar. SPIE, 2018. http://dx.doi.org/10.1117/12.2294574.
Der volle Inhalt der QuelleHu, Dong, Shashanka Ubaru, Alex Gittens, Kenneth L. Clarkson, Lior Horesh und Vassilis Kalantzis. „Sparse Graph Based Sketching for Fast Numerical Linear Algebra“. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021. http://dx.doi.org/10.1109/icassp39728.2021.9414030.
Der volle Inhalt der QuelleKrüger, Jens, und Rüdiger Westermann. „Linear algebra operators for GPU implementation of numerical algorithms“. In ACM SIGGRAPH 2005 Courses. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1198555.1198795.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Numerical linear and multilinear algebra"
Bradley, John S. Special Year on Numerical Linear Algebra. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada208199.
Der volle Inhalt der QuelleCarson, E. Final Report: Mixed Precision Numerical Linear Algebra. Office of Scientific and Technical Information (OSTI), Juni 2021. http://dx.doi.org/10.2172/1798446.
Der volle Inhalt der QuelleCarson, E. Final Report: Mixed Precision Numerical Linear Algebra. Office of Scientific and Technical Information (OSTI), Juni 2022. http://dx.doi.org/10.2172/1872699.
Der volle Inhalt der QuelleCarson, E. Final Report: Mixed Precision Numerical Linear Algebra. Office of Scientific and Technical Information (OSTI), Oktober 2023. http://dx.doi.org/10.2172/2204467.
Der volle Inhalt der QuelleCarson, E. Final Report: Mixed Precision Numerical Linear Algebra. Office of Scientific and Technical Information (OSTI), Dezember 2023. http://dx.doi.org/10.2172/2280470.
Der volle Inhalt der QuelleGeorganas, Evangelos, Jorge Gonzalez-Dominguez, Edgar Solomonik, Yili Zheng, Juan Tourino und Katherine A. Yelick. Communication Avoiding and Overlapping for Numerical Linear Algebra. Fort Belvoir, VA: Defense Technical Information Center, Mai 2012. http://dx.doi.org/10.21236/ada561679.
Der volle Inhalt der QuelleVu, Van H. Random Matrices, Combinatorics, Numerical Linear Algebra and Complex Networks. Fort Belvoir, VA: Defense Technical Information Center, Februar 2012. http://dx.doi.org/10.21236/ada567088.
Der volle Inhalt der QuelleDemmel, James. Conference: Three Decades of Numerical Linear Algebra at Berkeley. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada264964.
Der volle Inhalt der Quelle