Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Numerical analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Numerical analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Numerical analysis"
H, Girija Bai. „Numerical Analysis of Aneurysm in Artery“. International Journal of Psychosocial Rehabilitation 24, Nr. 4 (28.02.2020): 4975–81. http://dx.doi.org/10.37200/ijpr/v24i4/pr201597.
Der volle Inhalt der QuelleSong, Daegene. „Numerical Analysis in Entanglement Swapping Protocols“. NeuroQuantology 20, Nr. 2 (01.04.2022): 153–57. http://dx.doi.org/10.14704/nq.2022.20.2.nq22083.
Der volle Inhalt der QuelleRannacher, Rolf. „Numerical analysis of the Navier-Stokes equations“. Applications of Mathematics 38, Nr. 4 (1993): 361–80. http://dx.doi.org/10.21136/am.1993.104560.
Der volle Inhalt der QuellePerumal, Logah, C. P. Tso und Lim Thong Leng. „Novel Polyhedral Finite Elements for Numerical Analysis“. International Journal of Computer and Electrical Engineering 9, Nr. 2 (2017): 492–501. http://dx.doi.org/10.17706/ijcee.2017.9.2.492-501.
Der volle Inhalt der QuelleEllerby, F. B., I. Jacques und C. Judd. „Numerical Analysis“. Mathematical Gazette 72, Nr. 460 (Juni 1988): 156. http://dx.doi.org/10.2307/3618958.
Der volle Inhalt der QuelleJackson, I. R. H., und Bill Dalton. „Numerical Analysis“. Mathematical Gazette 76, Nr. 476 (Juli 1992): 307. http://dx.doi.org/10.2307/3619167.
Der volle Inhalt der QuelleMudge, Michael Richard, und Peter R. Turner. „Numerical Analysis“. Mathematical Gazette 81, Nr. 491 (Juli 1997): 342. http://dx.doi.org/10.2307/3619249.
Der volle Inhalt der QuelleStrawderman, William E., und Rainer Kress. „Numerical Analysis“. Journal of the American Statistical Association 95, Nr. 449 (März 2000): 348. http://dx.doi.org/10.2307/2669585.
Der volle Inhalt der QuelleBrezinski, C. „Numerical analysis“. Mathematics and Computers in Simulation 31, Nr. 6 (Februar 1990): 596. http://dx.doi.org/10.1016/0378-4754(90)90072-q.
Der volle Inhalt der QuelleClarke, G. M., R. L. Burden und J. D. Faires. „Numerical Analysis.“ Statistician 41, Nr. 1 (1992): 128. http://dx.doi.org/10.2307/2348648.
Der volle Inhalt der QuelleDissertationen zum Thema "Numerical analysis"
PATERNESI, ALESSANDRA. „Numerical analysis of traditionally excavated shallow tunnels“. Doctoral thesis, Università Politecnica delle Marche, 2017. http://hdl.handle.net/11566/245437.
Der volle Inhalt der QuelleAmong the problems that civil engineers have to face, the design and verification of an underground construction is one of the most challenging. A tunnel engineer has to tackle with a complex three-dimensional soil-structure interaction problem where many factors and uncertainties come into play. This is the reason why professional experience and engineering judgment usually play a crucial role. In recent years, numerical calculation techniques, which can provide an important basis for a better understanding of the problem, have strongly improved. They have become a fundamental resource for underground construction design, but they also entail some drawbacks: - only engineers with a strong numerical background can handle complex soil-structure interaction problems; - numerical calculations, especially if 3D, can be very time-consuming; - material parameters should be carefully evaluated, according to the particular problem and adopted constitutive law; - numerical models need to be validated with field monitoring data. The goal of this thesis is to investigate the main issues regarding the applicability of numerical analyses to the design and verification of traditionally excavated shallow tunnels. Despite, the remarkable technological improvement in mechanised tunnelling, traditional techniques still represent, in some cases, the most suitable and convenient solution. The principal advantage of traditional techniques is the high flexibility in the choice of supports and reinforcement measures. However, design flexibility implies a deep understanding of the ground response to underground openings as well as a conscious use of numerical models. This work provides a contribution to the numerical design of shallow tunnels by focusing on three principal issues: - stability of reinforced and unreinforced excavation faces; - Eurocodes applicability to a numerically-based design; - parameters calibration and numerical validation through comparison with monitoring data.
Ushaksaraei, Reza. „Numerical analysis of structural masonry /“. *McMaster only, 2002.
Den vollen Inhalt der Quelle findenBernving, Niels. „Numerical thermal analysis of SEAM“. Thesis, KTH, Rymd- och plasmafysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218037.
Der volle Inhalt der QuelleDetta examensarbete handlar om numerisk termisk analys av SEAM (SmallExplorer for Advanced Missions) satellit. SEAM är en 3U CubeSat, som skaskickas upp i solsynkron bana kring jorden för att utföra magnetfältmätningar.Satelliten använder sig av en utfällbar bom för att separera magnetsensorer frånmagnetiska störningar från satellitens elektronik. Examensarbetet syftar tillatt studera termiska beteende av satelliten, specifikt temperaturområden i bananför interna komponenter samt termisk deformation av den utfällbara bomstrukturen.Numeriska simuleringar av strålningsöverföring av värme använderMonte-Carlo metod för att följa strålar. Experimentella resultat från termiskvakuum testning av satelliten har jämförts med termiska modellen för att valideraden. Examensarbetet utgör den slutliga termiska analysen av satelliten, föratt säkerställa att alla komponenter används inom deras specificerade temperaturområde.
Ratnanather, John Tilak. „Numerical analysis of turbulent flow“. Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236094.
Der volle Inhalt der QuelleSILVA, JULIO CESAR DA. „NUMERICAL ANALYSIS OF NAILED STRUCTURES“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1999. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=904@1.
Der volle Inhalt der QuelleEsta pesquisa tem como objetivo a implementação de uma ferramenta numérica que contabiliza as inclusões horizontais e subhorizontais na parcela de solo devidamente discretizada por elementos finitos. Este modelo implementa a análise de esforços axiais e cisalhantes solicitados nas interfaces grampo/nata, nata/solo e no próprio aço (grampo) e, também, esforços fletores de um material “equivalente” formado pela combinação das rigidezes do grampo e da nata. Este objetivo é alcançado através da implementação de mais um “pacote” de subrotinas, denominado grampo, no programa DYNREL, desenvolvido no Departamento de Engenharia Civil da PUC-Rio (Figueiredo, 1991). A formulação proposta para contabilizar o efeito das inclusões considera, além dos deslocamentos nodais horizontal e vertical, a influência das rotações no sistema de forças envolvido. A parcela reativa do grampo é calculada iterativamente em função das variáveis primárias obtidas no programa principal para o meio discretizado sem reforço e, assim, acrescida ao vetor de forças internas contrárias. Logo o novo vetor de forças desbalanceadas do sistema incorpora o efeito das inclusões passivas (grampo). O presente trabalho apresenta detalhes da técnica de estruturas grampeadas, do modelo numérico de análise implementado, de exemplos de validação do comportamento das estruturas grampeadas e de exemplos ilustrativos destas estruturas.
The present research has as its main objective the development of a numerical tool capable of simulating the introduction of long structural inclusions in a soil mass discretized by finite elements. Models of the behaviour of the nail/grout system and its interaction with the soil mass were implemented. These models take into account the normal and shear loads transferred at the nail-grout and grout-soil interfaces besides the axial loads and moments acting in the nail itself. The models are able to consider both elastic and inelastic behaviour both at the interfaces and the nail. The proposed models , consisting on a set of subroutines, were implemented in the program DYNREL, developped at the Civil Engineering Department of PUC Rio (Figueiredo,1991). DYNREL is a finite element program which uses dynamic relaxation as the solution algorithm for the equilibrium equations. In the implementation carried out, it is considered that the soil mass is discretized without taking into account the nail. The reactions of the nails are calculated at each time step from the displacements of the elements intercepted by the nails. These displacements are used in the developped subroutines to generate the force reactions from the nails which in turn are transferred back to the finite element mesh for the following time step calculations. The present work presents detais of the implemented models as well as validation and illustrative examples. Conclusions are drawn relative to the numerical implementation carried out and to the results obtained on the analysis of hypothetical nailed retaining structure.
Esta investigación tiene como objetivo principal, el desarrollo de una herramienta numérica capaz de simular la introducción de refuerzos en una masa de suelo discretizada por elementos finitos. Fueron implementados modelos de comportamiento del sistema clavo/nata y sus interacciones con el suelo. Estos modelos consideran las cargas normales y cisallantes que actúan en las interfaces clavo - nata y nata - suelo debido a la acción de momentos y cargas axiales. Los modelos consideran tanto el comportamiento inelástico como el elástico en las interfaces y los clavos. Los modelos propuestos, que consisten en una serie de subrutinas, fueron implementados en el programa DYNREL, desarrollado en el Departamento de Ingeniería Civil de la PUC-Rio (Figueiredo, 1991). O DYNREL es un programa en elementos finitos que utiliza del Relajamiento Dinámico como algoritmo de solución para las ecuaciones de equilibrio. En la implementación se considera una masa de suelo discretizada sin llevar en cuenta el clavo. Las reacciones de los clavos se calculan en cada instante de tiempo por los desplazamientos de los elementos interceptados por los clavos. Estos desplazamientos se utilizan en las subrutinas desarrolladas para generar las fuerzas de reacción de los clavos, que son transferidos nuevamente para la red de elementos finitos para los cálculos en el instante de tiempo siguiente. Este trabajo presenta detalles de los modelos implementados, así como ejemplos de evaluación y aplicación. Se arriban a conclusiones relativas a la implementación numérica y a los resultados obtenidos del análisis de extructuras de contención clavadas hipotéticas.
Lin, Wei. „Numerical Analysis of Magnetohydrodynamic Pump“. Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1317230260.
Der volle Inhalt der QuelleEdwards, David Huntley. „Numerical analysis of spudcan foundations“. Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/8050.
Der volle Inhalt der QuelleHumphries, Antony R. „Numerical analysis of dynamical systems“. Thesis, University of Bath, 1993. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358937.
Der volle Inhalt der QuelleChen, Chuan. „Numerical algorithms for data processing and analysis“. HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/277.
Der volle Inhalt der QuellePiqueras, García Miguel Ángel. „Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and Computing“. Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107948.
Der volle Inhalt der QuelleMany problems in science and engineering are formulated as partial differential equations (PDEs). If the boundary of the domain where these equations are to be solved is not known a priori, we face "Free-boundary problems", which are characteristic of non-time dependent stationary systems; besides, we have "Moving-boundary problems" in temporal evolution processes, where the border changes over time. The solution to these problems is given by the expression of the dependent variable(s) of PDE(s), together with the function that determines the position of the boundary. Since the analytical solution of this type of problems is lacked in most cases, it is necessary to resort to numerical methods that allow an accurate enough solution to be obtained, and which also maintain the qualitative properties of the solution(s) of the continuous model. This work approaches the numerical study of some moving-boundary problems that arise in different disciplines. The applied methodology consists of two successive steps: firstly, the so-called Landau transformation, or "Front-fixing transformation", which is used in the PDE(s) model to maintain the boundary of the domain immobile; later, we proceed to its discretization with a finite difference scheme. Different numerical schemes are obtained and implemented through the MATLAB computational tool. Properties of the scheme and the numerical solution (positivity, stability, consistency, monotonicity, etc.) are studied by an exhaustive numerical analysis. The first chapter of this work reports the state of the art of the field under study, justifies the need to adapt numerical methods to this type of problem, and briefly describes the methodology used in our approach. Chapter 2 presents a problem in Mathematical Biology that consists in determining over time the evolution of an invasive species population that spreads in a habitat. This problem is modelled by a diffusion-reaction equation linked to a Stefan-type condition. The results of the numerical analysis confirm the existence of a spreading-vanishing dichotomy in the long-term evolution of the population density of the invasive species. In particular, it is possible to determine the value of the coefficient of the Stefan condition that separates the propagation behaviour from extinction. Chapters 3 and 4 focus on a problem of Concrete Chemistry with an interest in Civil Engineering: the carbonation of concrete, an evolutionary phenomenon that leads to the progressive degradation of the affected structure and its eventual ruin if preventive measures are not taken. Chapter 3 considers a system of two parabolic type PDEs with two unknowns. For its resolution, the initial and boundary conditions have to be considered together with the Stefan conditions on the carbonation front. The numerical analysis results agree with those obtained in a previous theoretical study. The dynamics of the concentrations and the moving boundary confirm the long-term behaviour of the evolution law for the moving boundary as a "square root of time". Chapter 4 considers a more general model than the previous one, which includes six chemical species, defined in both the carbonated and non-carbonated zones, whose concentrations have to be found. Chapter 5 addresses a heat transfer problem that appears in various industrial processes; in this case, the solidification of metals in casting processes, where the solid phase advances and liquid reduces until it is depleted. The moving boundary (the solidification front) separates both phases. Its position in each instant is the variable to be determined together with the temperature profiles in both phases. After suitable transformation, discretization is carried out to obtain a finite difference scheme to be implemented. The process was subdivided into three temporal stages to deal with the singularities associated with the moving boundary position in the initialisation and depletion stages.
Multitud de problemes en ciència i enginyeria es plantegen com a equacions en derivades parcials (EDPs). Si la frontera del recinte on eixes equacions han de satisfer-se es desconeix a priori, es parla de "Problemas de frontera lliure", propis de sistemes estacionaris no dependents del temps, o bé de "Problemas de frontera mòbil", associats a problemes d'evolució temporal, on la frontera canvia amb el temps. Atés que este tipus de problemes manca en la majoria dels casos de solució analítica coneguda, es fa precís recórrer a mètodes numèrics que permeten obtindre una solució prou aproximada a l'exacta, i que a més mantinga propietats qualitatives de la solució del model continu d'EDP(s). En aquest treball s'ha abordat l'estudi numèric d'alguns problemes de frontera mòbil provinents de diverses disciplines. La metodologia aplicada consta de dos passos successius: en primer lloc, s'aplica l'anomenada transformació de Landau o "Front-fixing transformation" al model en EDP(s) a fi de mantindre immòbil la frontera del domini; posteriorment, es procedix a la seva discretització a través d'un esquema en diferències finites. D'ací s'obtenen esquemes numèrics que s'implementen per mitjà de la ferramenta informàtica MATLAB. Per mitjà d'una exhaustiva anàlisi numèrica, s'estudien propietats de l'esquema i de la solució numèrica (positivitat, estabilitat, consistència, monotonia, etc.). En el primer capítol d'aquest treball es revisa l'estat de l'art del camp objecte d'estudi, es justifica la necessitat de disposar de mètodes numèrics adaptats a aquest tipus de problemes i es descriu breument la metodologia emprada en el nostre enfocament. El Capítol 2 es dedica a un problema pertanyent a la Biologia Matemàtica i que consistix a determinar l'evolució en el temps de la distribució de la població d'una espècie invasora que es propaga en un hàbitat. Este model consistix en una equació de difusió-reacció unida a una condició tipus Stefan, que relaciona les funcions solució i frontera mòbil a determinar. Els resultats de l'anàlisi numèrica confirmen l'existència d'una dicotomia propagació-extinció en l'evolució a llarg termini de la densitat de població de l'espècie invasora. En particular, s'ha pogut precisar el valor del coeficient de la condició de Stefan que separa el comportament de propagació del d'extinció. Els Capítols 3 i 4 se centren en un problema de Química del Formigó amb interés en Enginyeria Civil: el procés de carbonatació del formigó, fenomen evolutiu que comporta la degradació progressiva de l'estructura afectada i finalment la seua ruïna, si no es prenen mesures preventives. En el Capítol 3 es considera un sistema de dos EDPs de tipus parabòlic amb dos incògnites. Per a la seua resolució, cal considerar a més, les condicions inicials, les de contorn i les de tipus Stefan en la frontera. Els resultats de l'anàlisi numèrica s'ajusten als obtinguts en un estudi teòric previ. S'han dut a terme experiments numèrics, comprovant la tendència de la llei d'evolució de la frontera mòbil cap a una funció del tipus "arrel quadrada del temps". En el Capítol 4 es considera un model més general, en el que intervenen sis espècies químiques les concentracions de les quals cal trobar, i que es troben tant en la zona carbonatada com en la no carbonatada. En el Capítol 5 s'aborda un problema de transmissió de calor que apareix en diversos processos industrials; en aquest cas, en el refredament durant la bugada de metall fos, on la fase sòlida avança i la líquida es va extingint. La frontera mòbil (front de solidificació) separa ambdues fases, sent la seua posició en cada instant la variable a determinar, junt amb les temperatures en cada una de les dos fases. Després de l'adequada transformació i discretització, s'implementa un esquema en diferències finites, subdividint el procés en tres estadis temporals, per tal de tractar les singularitats asso
Piqueras García, MÁ. (2018). Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and Computing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107948
TESIS
Bücher zum Thema "Numerical analysis"
Jacques, Ian. Numerical analysis. London: Chapman and Hall, 1987.
Den vollen Inhalt der Quelle findenKress, Rainer. Numerical analysis. New York: Springer, 1998.
Den vollen Inhalt der Quelle findenKress, Rainer. Numerical Analysis. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0599-9.
Der volle Inhalt der QuelleHennart, Jean-Pierre, Hrsg. Numerical Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0072666.
Der volle Inhalt der QuelleGautschi, Walter. Numerical Analysis. Boston: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8259-0.
Der volle Inhalt der QuelleJacques, Ian, und Colin Judd. Numerical Analysis. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3157-2.
Der volle Inhalt der QuelleJacques, Ian, und Colin Judd. Numerical Analysis. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-5471-2.
Der volle Inhalt der QuelleTurner, Peter R. Numerical Analysis. London: Macmillan Education UK, 1994. http://dx.doi.org/10.1007/978-1-349-13108-2.
Der volle Inhalt der QuelleDouglas, Faires J., Hrsg. Numerical analysis. 7. Aufl. Australia: Brooks/Cole, 2001.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Numerical Analysis. Boston: Springer Science+Business Media, LLC, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Numerical analysis"
Turner, Peter R. „Numerical Differentiation“. In Numerical Analysis, 160–71. London: Macmillan Education UK, 1994. http://dx.doi.org/10.1007/978-1-349-13108-2_10.
Der volle Inhalt der QuelleTurner, Peter R. „Numerical Integration“. In Numerical Analysis, 172–92. London: Macmillan Education UK, 1994. http://dx.doi.org/10.1007/978-1-349-13108-2_11.
Der volle Inhalt der QuellePotter, Merle C. „Numerical Methods“. In Engineering Analysis, 348–405. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91683-5_8.
Der volle Inhalt der QuelleAraújo, Gustavo da Silva, Luis Bernal González, José L. Gámez Merino, María E. Martínez Gómez, Gustavo A. Muñoz Fernández, Daniel L. Rodríguez Vidanes und Juan B. Seoane Sepúlveda. „Numerical Series“. In Real Analysis, 418–74. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003400745-7.
Der volle Inhalt der QuelleGustafson, Karl E., und Duggirala K. M. Rao. „Numerical Analysis“. In Numerical Range, 80–108. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4613-8498-4_4.
Der volle Inhalt der QuelleHoffmann, Karl-Heinz, und Qi Tang. „Numerical Analysis“. In Ginzburg-Landau Phase Transition Theory and Superconductivity, 327–74. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8274-3_10.
Der volle Inhalt der QuelleGustafson, Grant B., und Calvin H. Wilcox. „Numerical Analysis“. In Texts in Applied Mathematics, 1–75. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0633-0_1.
Der volle Inhalt der QuelleBronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol und Heiner Muehlig. „Numerical Analysis“. In Handbook of Mathematics, 881–949. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_19.
Der volle Inhalt der QuelleJeffrey, Alan. „Numerical analysis“. In Mathematics for Engineers and Scientists, 748–92. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3128-3_17.
Der volle Inhalt der QuelleBronshtein, I. N., K. A. Semendyayev, Gerhard Musiol und Heiner Mühlig. „Numerical Analysis“. In Handbook of Mathematics, 949–1022. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46221-8_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Numerical analysis"
Dragomir, Sever S., Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Inequalities with Applications in Numerical Analysis“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790240.
Der volle Inhalt der QuelleLotfi, Abdelhakim, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Numerical Method for Computer Generated Hologram“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790149.
Der volle Inhalt der QuelleYesilel, H., F. O. Edis, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Ship Airwake Analysis by CFD Methods“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790239.
Der volle Inhalt der QuelleButoescu, Valentin, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Modeling the Thin Flapping Wing with Leading Edge Separation“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790082.
Der volle Inhalt der QuelleCarvalho, E., J. Cruz, P. Barahona, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Probabilistic Reasoning with Continuous Constraints“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790083.
Der volle Inhalt der QuelleCătinaş, Teodora, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „A Modified Version of Bivariate Shepard-Lidstone Operator“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790084.
Der volle Inhalt der Quellein 't Hout, Karel, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „ADI Schemes in the Numerical Solution of the Heston PDE“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790085.
Der volle Inhalt der QuelleClotet, Josep, M. Dolors Magret, Marta Peña, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Miniversal Deformations of Pairs of Symmetric Second-order Tensors in the Context of Solid Mechanics“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790086.
Der volle Inhalt der QuelleChemetov, Nikolai V., Alexander I. Sukov, Ilgiz N. Hairullin, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Analytical-Numerical Investigation the Problem of Diffraction by a Periodic Surface: Double Variational Method“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790087.
Der volle Inhalt der QuelleChen, Chin-Yun, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Application of Peano Kernels Theorem to Bivariate Product Cubature“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790088.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Numerical analysis"
Parter, S. Numerical Analysis. Fort Belvoir, VA: Defense Technical Information Center, Juni 1985. http://dx.doi.org/10.21236/ada160207.
Der volle Inhalt der QuelleParter, Seymour V. Numerical Analysis. Fort Belvoir, VA: Defense Technical Information Center, Juni 1986. http://dx.doi.org/10.21236/ada174936.
Der volle Inhalt der QuelleParter, Seymour V. Numerical Analysis. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada221982.
Der volle Inhalt der QuellePeralta-Alva, Adrian, und Manuel S. Santos. Analysis of Numerical Errors. Federal Reserve Bank of St. Louis, 2012. http://dx.doi.org/10.20955/wp.2012.062.
Der volle Inhalt der QuelleBarry, Matthew, Eric Bush, Doug Smith, Devesh Bhatt, David Oglesby, Anca Browne und Steve Hickman. Static Analysis Numerical Algorithms. Fort Belvoir, VA: Defense Technical Information Center, April 2016. http://dx.doi.org/10.21236/ad1008340.
Der volle Inhalt der QuelleDongarra, J., und B. Rosener. NA-NET numerical analysis net. Office of Scientific and Technical Information (OSTI), Dezember 1991. http://dx.doi.org/10.2172/10104382.
Der volle Inhalt der QuelleDongarra, J., und B. Rosener. NA-NET numerical analysis net. Office of Scientific and Technical Information (OSTI), Dezember 1991. http://dx.doi.org/10.2172/6149130.
Der volle Inhalt der QuelleStuart, Andrew M. Numerical Analysis of Evolution Equations. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada324354.
Der volle Inhalt der QuelleRose, Donald J. Studies in Nonlinear Numerical Analysis. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada273911.
Der volle Inhalt der QuelleRozovskii, Boris, und Alexander Tartakovsky. Nonlinear Filtering: Analysis and Numerical Methods. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada399200.
Der volle Inhalt der Quelle