Dissertationen zum Thema „Numbers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Numbers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Namasivayam, M. „Entropy numbers, s-numbers and embeddings“. Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356519.
Der volle Inhalt der QuelleAllagan, Julian Apelete D. Johnson Peter D. „Choice numbers, Ohba numbers and Hall numbers of some complete k-partite graphs“. Auburn, Ala, 2009. http://hdl.handle.net/10415/1780.
Der volle Inhalt der QuelleFransson, Jonas. „Generalized Fibonacci Series Considered modulo n“. Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-26844.
Der volle Inhalt der QuelleAnderson, Crystal Lynn. „An Introduction to Number Theory Prime Numbers and Their Applications“. Digital Commons @ East Tennessee State University, 2006. https://dc.etsu.edu/etd/2222.
Der volle Inhalt der QuelleChipatala, Overtone. „Polygonal numbers“. Kansas State University, 2016. http://hdl.handle.net/2097/32923.
Der volle Inhalt der QuelleDepartment of Mathematics
Todd Cochrane
Polygonal numbers are nonnegative integers constructed and represented by geometrical arrangements of equally spaced points that form regular polygons. These numbers were originally studied by Pythagoras, with their long history dating from 570 B.C, and are often referred to by the Greek mathematicians. During the ancient period, polygonal numbers were described by units which were expressed by dots or pebbles arranged to form geometrical polygons. In his "Introductio Arithmetica", Nicomachus of Gerasa (c. 100 A.D), thoroughly discussed polygonal numbers. Other Greek authors who did remarkable work on the numbers include Theon of Smyrna (c. 130 A.D), and Diophantus of Alexandria (c. 250 A.D). Polygonal numbers are widely applied and related to various mathematical concepts. The primary purpose of this report is to define and discuss polygonal numbers in application and relation to some of these concepts. For instance, among other topics, the report describes what triangle numbers are and provides many interesting properties and identities that they satisfy. Sums of squares, including Lagrange's Four Squares Theorem, and Legendre's Three Squares Theorem are included in the paper as well. Finally, the report introduces and proves its main theorems, Gauss' Eureka Theorem and Cauchy's Polygonal Number Theorem.
Tomasini, Alejandro. „Wittgensteinian Numbers“. Pontificia Universidad Católica del Perú - Departamento de Humanidades, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/112986.
Der volle Inhalt der QuelleEn este trabajo reconstruyo la concepción tractariana de los números naturales. Muestro cómo Wittgenstein usa su aparato conceptual (operación, conceptoformal, propiedad interna, forma lógica) para elaborar una definición de número alternativa a la logicista. Por último, examino brevemente algunas de lascríticas que se han elevado en su contra.
Hostetler, Joshua. „Surreal Numbers“. VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2935.
Der volle Inhalt der QuelleHo, Kwan-hung, und 何君雄. „On the prime twins conjecture and almost-prime k-tuples“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B29768421.
Der volle Inhalt der QuelleChan, Ching-yin, und 陳靖然. „On k-tuples of almost primes“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/195967.
Der volle Inhalt der QuelleKetkar, Pallavi S. (Pallavi Subhash). „Primitive Substitutive Numbers are Closed under Rational Multiplication“. Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278637/.
Der volle Inhalt der QuelleEwers-Rogers, Jennifer. „Very young children's understanding and use of numbers and number symbols“. Thesis, University College London (University of London), 2002. http://discovery.ucl.ac.uk/10007376/.
Der volle Inhalt der QuelleAllen, Emily. „Combinatorial Interpretations Of Generalizations Of Catalan Numbers And Ballot Numbers“. Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/366.
Der volle Inhalt der QuelleBento, Antonio Jorge Gomes. „Interpolation, measures of non-compactness, entropy numbers and s-numbers“. Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.344067.
Der volle Inhalt der QuelleLin, Wensong. „Circular chromatic numbers and distance two labelling numbers of graphs“. HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/591.
Der volle Inhalt der QuelleMagnusson, Tobias. „Counting Class Numbers“. Thesis, KTH, Matematik (Avd.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223643.
Der volle Inhalt der QuelleFöljande mastersuppsats innehåller en utförlig redogörelse av klassgruppsteori. Först introduceras formklassgruppen genom ekvivalensklasser av en typ av binära kvadratiska former med heltalskoefficienter och en given diskriminant. Mängden av klasser görs sedan till en grupp genom en operation som kallas "komposition''. Därefter introduceras idealklassgruppen genom klasser av kvotideal i heltalsringen till kvadratiska talkroppar med given diskriminant. Det visas sedan att formklassgruppen och idealklassgruppen är isomorfa för negativa fundamentala diskriminanter. Några konkreta beräkningar görs sedan, efter vilka en av de mest centrala förmodandena gällande det genomsnittliga beteendet av klassgrupper med diskriminant mindre än $X$ -- Cohen-Lenstra heuristiken -- formuleras och motiveras. Uppsatsen avslutas med en skiss av ett bevis av Bob Hough av ett starkt resultat relaterat till ett specialfall av Cohen-Lenstra heuristiken.
Ishii, Minoru 1945. „Small Ramsey numbers“. Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63235.
Der volle Inhalt der QuelleShi, Lingsheng. „Numbers and topologies“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2003. http://dx.doi.org/10.18452/14871.
Der volle Inhalt der QuelleIn graph Ramsey theory, Burr and Erdos in 1970s posed two conjectures which may be considered as initial steps toward the problem of characterizing the set of graphs for which Ramsey numbers grow linearly in their orders. One conjecture is that Ramsey numbers grow linearly for all degenerate graphs and the other is that Ramsey numbers grow linearly for cubes. Though unable to settle these two conjectures, we have contributed many weaker versions that support the likely truth of the first conjecture and obtained a polynomial upper bound for the Ramsey numbers of cubes that considerably improves all previous bounds and comes close to the linear bound in the second conjecture. In topological Ramsey theory, Kojman recently observed a topological converse of Hindman's theorem and then introduced the so-called Hindman space and van der Waerden space (both of which are stronger than sequentially compact spaces) corresponding respectively to Hindman's theorem and van der Waerden's theorem. In this thesis, we will strengthen the topological converse of Hindman's theorem by using canonical Ramsey theorem, and introduce differential compactness that arises naturally in this context and study its relations to other spaces as well. Also by using compact dynamical systems, we will extend a classical Ramsey type theorem of Brown and Hindman et al on piecewise syndetic sets from natural numbers and discrete semigroups to locally connected semigroups.
Schwartzkopff, Robert. „The numbers of the marketplace : commitment to numbers in natural language“. Thesis, University of Oxford, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711821.
Der volle Inhalt der QuelleSlavic, Aida. „Call numbers, book numbers and collection arrangements in European library traditions“. Ess Ess Pub, 2009. http://hdl.handle.net/10150/111798.
Der volle Inhalt der QuelleBrown, Bruce J. L. „Numbers: a dream or reality? A return to objects in number learning“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-82378.
Der volle Inhalt der QuelleSimmons, Jill. „CO-irredundant Ramsey numbers“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0005/MQ36621.pdf.
Der volle Inhalt der QuelleHey, Jessica L. „"Coming out" by numbers“. Ohio : Ohio University, 2007. http://www.ohiolink.edu/etd/view.cgi?ohiou1189022132.
Der volle Inhalt der QuelleMegyesi, Gabor. „Inequalities between Chern numbers“. Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308243.
Der volle Inhalt der QuelleRivard-Cooke, Martin. „Parametric Geometry of Numbers“. Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38871.
Der volle Inhalt der QuelleFornasiero, Antongiulio. „Integration on surreal numbers“. Thesis, University of Edinburgh, 2004. http://hdl.handle.net/1842/12194.
Der volle Inhalt der QuelleAnicama, Jorge. „Prime numbers and encryption“. Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95565.
Der volle Inhalt der QuelleShah, Sunil. „The white man's numbers“. Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/12498.
Der volle Inhalt der QuellePalladino, Chiara. „Numbers, winds and stars“. Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-221565.
Der volle Inhalt der QuelleJonsson, Helena. „Bimodules over dual numbers“. Thesis, Uppsala universitet, Algebra och geometri, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325502.
Der volle Inhalt der QuelleMcNamara, James N. „Two new Ramsey numbers /“. Online version of thesis, 1992. http://hdl.handle.net/1850/11146.
Der volle Inhalt der QuelleWarren, Erin. „How we understand numbers“. View electronic thesis, 2008. http://dl.uncw.edu/etd/2008-3/warrene/erinwarren.pdf.
Der volle Inhalt der QuelleYamada, Tomohiro. „Unitary super perfect numbers“. 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/124385.
Der volle Inhalt der QuelleChakmak, Ryan. „Eigenvalues and Approximation Numbers“. Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/cmc_theses/2167.
Der volle Inhalt der QuelleGoldoni, Luca. „Prime Numbers and Polynomials“. Doctoral thesis, Università degli studi di Trento, 2010. https://hdl.handle.net/11572/368684.
Der volle Inhalt der QuelleGoldoni, Luca. „Prime Numbers and Polynomials“. Doctoral thesis, University of Trento, 2010. http://eprints-phd.biblio.unitn.it/384/1/Thesis.pdf.
Der volle Inhalt der QuelleMüller, Dana. „The representation of numbers in space : a journey along the mental number line“. Phd thesis, Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2007/1294/.
Der volle Inhalt der QuelleDie vorliegende Arbeit beschäftigt sich mit der räumlichen Repräsentation von Zahlen. Generell wird angenommen, dass Zahlen in einer kontinuierlichen und analogen Art und Weise auf einem mentalen Zahlenstrahl repräsentiert werden. Dehaene, Bossini und Giraux (1993) zeigten, dass der mentale Zahlenstrahl eine räumliche Orientierung von links-nach-rechts aufweist. In einer Paritätsaufgabe fanden sie schnellere Links-hand Antworten auf kleine Zahlen und schnellere Rechts-hand Antworten auf große Zahlen. Dieser Effekt wurde Spatial Numerical Association of Response Codes (SNARC) Effekt genannt. In der ersten Studie der vorliegenden Arbeit ging es um den Einfluss der Schriftrichtung auf den SNARC Effekt. Eine strenge ontogenetische Sichtweise sagt vorher, dass der SNARC Effekt nur mit Effektoren, die unmittelbar in die Produktion und das Verstehen von Schriftsprache involviert sind, auftreten sollte (Hände und Augen). Um dies zu überprüfen, forderten wir Versuchspersonen auf, die Parität dargestellter Ziffern durch Tastendruck mit ihrem rechten oder linken Fuß anzuzeigen. Entgegen der strengen ontogenetischen Hypothese fanden wir den SNARC Effekt auch für Fußantworten, welcher sich in seiner Charakteristik nicht von dem manuellen SNARC Effekt unterschied. In der zweiten Studie gingen wir der Frage nach, ob dem SNARC Effekt eine Assoziation des nicht-körperbezogenen Raumes und Zahlen oder der Hände und Zahlen zugrunde liegt. Um dies zu untersuchen, variierten wir die räumliche Orientierung der Tasten zueinander (vertikal vs. horizontal) als auch die Instruktionen (hand-bezogen vs. knopf-bezogen). Bei einer vertikalen Knopfanordnung und einer knopf-bezogenen Instruktion fanden wir einen knopfbezogenen SNARC Effekt. Bei einer hand-bezogenen Instruktion fanden wir einen hand-bezogenen SNARC Effekt. Mit horizontal angeordneten Knöpfen gab es unabhängig von der Instruktion einen knopf-bezogenen SNARC Effekt. Die Ergebnisse dieser beiden ersten Studien wurden im Sinne einer schwachen ontogenetischen Sichtweise interpretiert. In der dritten Studie befassten wir uns mit dem funktionalen Ursprung des SNARC Effekts. Hierfür nutzten wir das Psychological Refractory Period (PRP) Paradigma. In einem ersten Experiment hörten Versuchspersonen zuerst einen Ton nach welchem eine Ziffer visuell präsentiert wurde (locus-of-slack Paradigma). In einem zweiten Experiment wurde die Reihenfolge der Stimuluspräsentation/Aufgaben umgedreht (effect-propagation Paradigma). Unsere Ergebnisse lassen vermuten, dass der SNARC Effekt während der zentralen Antwortselektion generiert wird. In unserer vierten Studie überprüften wir, ob Zahlen auch mit Zeit assoziiert werden. Wir forderten Versuchspersonen auf zwei seriell dargebotene Zahlen miteinander zu vergleichen. Versuchspersonen waren schneller zeitlich aufsteigende Zahlen (z.B. erst 2 dann 3) als zeitlich abfolgenden Zahlen (z.B. erst 3 dann 2) miteinander zu vergleichen. Unsere Ergebnisse wurden im Sinne unseres vorwärtsgerichteten Mechanismus des Zählens („1-2-3“) interpretiert.
Lozier, Stephane. „On simultaneous approximation to a real number and its cube by rational numbers“. Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28701.
Der volle Inhalt der QuelleKong, Yafang, und 孔亚方. „On linear equations in primes and powers of two“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50533769.
Der volle Inhalt der Quellepublished_or_final_version
Mathematics
Doctoral
Doctor of Philosophy
Spolaor, Silvana de Lourdes Gálio. „Números irracionais: e e“. Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-02102013-160720/.
Der volle Inhalt der QuelleIn this thesis we present some properties of real numbers. We describe briefly the numerical sets N, Z, Q and R, and we present detailed proofs of irrationality of numbers \'pi\' and e. We also present a text about the number e less technical and more intuitive in an attempt to assist the teacher in preparing lessons about number e for High School students as well as for Teaching degree in Mathematics students
Munter, Johan. „Number Recognition of Real-world Images in the Forest Industry : a study of segmentation and recognition of numbers on images of logs with color-stamped numbers“. Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39365.
Der volle Inhalt der QuelleMeinke, Ashley Marie. „Fibonacci Numbers and Associated Matrices“. Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1310588704.
Der volle Inhalt der QuelleIuculano, T. „Good and bad at numbers : typical and atypical development of number processing and arithmetic“. Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1355958/.
Der volle Inhalt der QuelleMcNicholas, Aine. „Dickens by Numbers : the 'Christmas Numbers' of 'Household Words' and 'All the Year Round'“. Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/10391/.
Der volle Inhalt der QuelleColes, Jonathan. „Algorithms for bounding Folkman numbers /“. Online version of thesis, 2005. https://ritdml.rit.edu/dspace/handle/1850/2765.
Der volle Inhalt der QuelleMankiewicz, Piotr, Carsten Schuett und schuett@math uni-kiel de. „On the Delone Triangulation Numbers“. ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi952.ps.
Der volle Inhalt der QuelleParra, Rodrigo. „Lelong numbers on projective varieties“. Licentiate thesis, KTH, Matematik (Inst.), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25285.
Der volle Inhalt der QuelleWolczuk, Dan. „Intervals with few Prime Numbers“. Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1064.
Der volle Inhalt der QuelleFollon, Derek. „Synthesis from numbers to intentionality“. Thesis, University of Ottawa (Canada), 1985. http://hdl.handle.net/10393/4600.
Der volle Inhalt der QuelleGuadiana, Juan, James Baird und Curtiss Tackill. „Modeling and Simulation with Numbers!“ International Foundation for Telemetering, 2017. http://hdl.handle.net/10150/626946.
Der volle Inhalt der QuelleJohnstone, Jennifer Ann. „Congruent numbers and elliptic curves“. Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/26993.
Der volle Inhalt der Quelle