Zeitschriftenartikel zum Thema „Numbers, Rational“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Numbers, Rational.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Numbers, Rational" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

., Jyoti. „Rational Numbers“. Journal of Advances and Scholarly Researches in Allied Education 15, Nr. 5 (01.07.2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Scott Malcom, P. „Understanding Rational Numbers“. Mathematics Teacher 80, Nr. 7 (Oktober 1987): 518–21. http://dx.doi.org/10.5951/mt.80.7.0518.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Understanding is sometimes an elusive goal in mathematics. Although we may believe we have a complete understanding of a concept, another approach to this same concept may bring us additional insight.
3

Lennerstad, Håkan, und Lars Lundberg. „Decomposing rational numbers“. Acta Arithmetica 145, Nr. 3 (2010): 213–20. http://dx.doi.org/10.4064/aa145-3-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

PEYTON JONES, SIMON. „12 Rational Numbers“. Journal of Functional Programming 13, Nr. 1 (Januar 2003): 149–52. http://dx.doi.org/10.1017/s0956796803001412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Frougny, Christiane, und Karel Klouda. „Rational base number systems forp-adic numbers“. RAIRO - Theoretical Informatics and Applications 46, Nr. 1 (22.08.2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Roy, Damien, und Johannes Schleischitz. „Numbers with Almost all Convergents in a Cantor Set“. Canadian Mathematical Bulletin 62, Nr. 4 (03.12.2018): 869–75. http://dx.doi.org/10.4153/s0008439518000450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractIn 1984, K. Mahler asked how well elements in the Cantor middle third set can be approximated by rational numbers from that set and by rational numbers outside of that set. We consider more general missing digit sets $C$ and construct numbers in $C$ that are arbitrarily well approximable by rationals in $C$, but badly approximable by rationals outside of $C$. More precisely, we construct them so that all but finitely many of their convergents lie in $C$.
7

Gong, Linming, Bo Yang, Tao Xue, Jinguang Chen und Wei Wang. „Secure rational numbers equivalence test based on threshold cryptosystem with rational numbers“. Information Sciences 466 (Oktober 2018): 44–54. http://dx.doi.org/10.1016/j.ins.2018.07.046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Korhonen, Risto. „Approximation of real numbers with rational number sequences“. Proceedings of the American Mathematical Society 137, Nr. 01 (14.08.2008): 107–13. http://dx.doi.org/10.1090/s0002-9939-08-09479-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Belin, Mervenur, und Gülseren Karagöz Akar. „Exploring Real Numbers as Rational Number Sequences With Prospective Mathematics Teachers“. Mathematics Teacher Educator 9, Nr. 1 (01.09.2020): 63–87. http://dx.doi.org/10.5951/mte.2020.9999.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The understandings prospective mathematics teachers develop by focusing on quantities and quantitative relationships within real numbers have the potential for enhancing their future students’ understanding of real numbers. In this article, we propose an instructional sequence that addresses quantitative relationships for the construction of real numbers as rational number sequences. We found that the instructional sequence enhanced prospective teachers’ understanding of real numbers by considering them as quantities and explaining them by using rational number sequences. In particular, results showed that prospective teachers reasoned about fractions and decimal representations of rational numbers using long division, the division algorithm, and diagrams. This further prompted their reasoning with decimal representations of rational and irrational numbers as rational number sequences, which leads to authentic construction of real numbers. Enacting the instructional sequence provides lenses for mathematics teacher educators to notice and eliminate difficulties of their students while developing relationships among multiple representations of real numbers.
10

Marcos, J. E. „Topological completions of the field of rational numbers which consist of Liouville numbers and rational numbers“. Journal of Pure and Applied Algebra 138, Nr. 3 (Mai 1999): 251–77. http://dx.doi.org/10.1016/s0022-4049(98)00053-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Sándor, József. „On certain rational perfect numbers“. Notes on Number Theory and Discrete Mathematics 28, Nr. 2 (12.05.2022): 281–85. http://dx.doi.org/10.7546/nntdm.2022.28.2.281-285.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Atanasiu, Dragu. „Laplace Integral on Rational Numbers.“ MATHEMATICA SCANDINAVICA 76 (01.12.1995): 152. http://dx.doi.org/10.7146/math.scand.a-12531.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Detorie, Rick. „Let's Be Rational about Numbers“. Mathematics Teaching in the Middle School 20, Nr. 7 (März 2015): 394–97. http://dx.doi.org/10.5951/mathteacmiddscho.20.7.0394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Goetz, Melanie. „The irrationality of rational numbers“. Journal - American Water Works Association 105, Nr. 7 (Juli 2013): 82–84. http://dx.doi.org/10.5942/jawwa.2013.105.0096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Almada, Carlos. „On counting the rational numbers“. International Journal of Mathematical Education in Science and Technology 41, Nr. 8 (15.12.2010): 1096–101. http://dx.doi.org/10.1080/0020739x.2010.500695.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Smith III, John P. „Competent Reasoning With Rational Numbers“. Cognition and Instruction 13, Nr. 1 (März 1995): 3–50. http://dx.doi.org/10.1207/s1532690xci1301_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Bowker, Geoffrey C., und Susan Leigh Star. „Pure, Real and Rational Numbers“. Social Studies of Science 31, Nr. 3 (Juni 2001): 422–25. http://dx.doi.org/10.1177/030631201031003006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Rowland, Eric, und Jeffrey Shallit. „Automatic Sets of Rational Numbers“. International Journal of Foundations of Computer Science 26, Nr. 03 (April 2015): 343–65. http://dx.doi.org/10.1142/s0129054115500197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The notion of a [Formula: see text]-automatic set of integers is well-studied. We develop a new notion — the [Formula: see text]-automatic set of rational numbers — and prove basic properties of these sets, including closure properties and decidability.
19

Vourdas, A. „Harmonic analysis on rational numbers“. Journal of Mathematical Analysis and Applications 394, Nr. 1 (Oktober 2012): 48–60. http://dx.doi.org/10.1016/j.jmaa.2012.04.059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Tasoev, B. G. „Rational approximations to certain numbers“. Mathematical Notes 67, Nr. 6 (Juni 2000): 786–91. http://dx.doi.org/10.1007/bf02675633.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Trespalacios, Jesús, und Barbara Chamberline. „Pearl diver: Identifying numbers on a number line“. Teaching Children Mathematics 18, Nr. 7 (März 2012): 446–47. http://dx.doi.org/10.5951/teacchilmath.18.7.0446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Elias, Henrique Rizek, Alessandro Jacques Ribeiro und Angela Marta Pereira das Dores Savioli. „Epistemological Matrix of Rational Number: a Look at the Different Meanings of Rational Numbers“. International Journal of Science and Mathematics Education 18, Nr. 2 (19.03.2019): 357–76. http://dx.doi.org/10.1007/s10763-019-09965-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

BERGER, ARNO. „On linear independence of trigonometric numbers“. Carpathian Journal of Mathematics 34, Nr. 2 (2018): 157–66. http://dx.doi.org/10.37193/cjm.2018.02.04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A necessary and sufficient condition is established for 1, cos(πr1), and cos(πr2) to be rationally independent, where r1, r2 are rational numbers. The elementary computational argument yields linear independence over larger number fields as well.
24

Koo, Reginald. „95.03 Geometric enumeration of the rationals between any two rational numbers“. Mathematical Gazette 95, Nr. 532 (März 2011): 63–66. http://dx.doi.org/10.1017/s0025557200002357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Hurst, Michelle, und Sara Cordes. „Rational-number comparison across notation: Fractions, decimals, and whole numbers.“ Journal of Experimental Psychology: Human Perception and Performance 42, Nr. 2 (2016): 281–93. http://dx.doi.org/10.1037/xhp0000140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Mueller, Julia, und W. M. Schmidt. „On the number of good rational approximations to algebraic numbers“. Proceedings of the American Mathematical Society 106, Nr. 4 (01.04.1989): 859. http://dx.doi.org/10.1090/s0002-9939-1989-0961415-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Van Hoof, Jo, Lieven Verschaffel und Wim Van Dooren. „Number sense in the transition from natural to rational numbers“. British Journal of Educational Psychology 87, Nr. 1 (31.10.2016): 43–56. http://dx.doi.org/10.1111/bjep.12134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

., Norris Sookoo, und Ashok Sahai . „Partial Densities on the Rational Numbers“. Journal of Applied Sciences 7, Nr. 6 (01.03.2007): 830–34. http://dx.doi.org/10.3923/jas.2007.830.834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Sándor, József. „On certain rational perfect numbers, II“. Notes on Number Theory and Discrete Mathematics 28, Nr. 3 (10.08.2022): 525–32. http://dx.doi.org/10.7546/nntdm.2022.28.3.525-532.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We continue the study from [1], by studying equations of type $\psi(n) = \dfrac{k+1}{k} \cdot \ n+a,$ $a\in \{0, 1, 2, 3\},$ and $\varphi(n) = \dfrac{k-1}{k} \cdot \ n-a,$ $a\in \{0, 1, 2, 3\}$ for $k > 1,$ where $\psi(n)$ and $\varphi(n)$ denote the Dedekind, respectively Euler's, arithmetical functions.
30

Shulga, Nikita. „Rational approximations to two irrational numbers“. Moscow Journal of Combinatorics and Number Theory 11, Nr. 1 (30.03.2022): 1–10. http://dx.doi.org/10.2140/moscow.2022.11.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

MILLER, RUSSELL. „HTP-COMPLETE RINGS OF RATIONAL NUMBERS“. Journal of Symbolic Logic 87, Nr. 1 (22.11.2021): 252–72. http://dx.doi.org/10.1017/jsl.2021.96.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractFor a ring R, Hilbert’s Tenth Problem $HTP(R)$ is the set of polynomial equations over R, in several variables, with solutions in R. We view $HTP$ as an enumeration operator, mapping each set W of prime numbers to $HTP(\mathbb {Z}[W^{-1}])$ , which is naturally viewed as a set of polynomials in $\mathbb {Z}[X_1,X_2,\ldots ]$ . It is known that for almost all W, the jump $W'$ does not $1$ -reduce to $HTP(R_W)$ . In contrast, we show that every Turing degree contains a set W for which such a $1$ -reduction does hold: these W are said to be HTP-complete. Continuing, we derive additional results regarding the impossibility that a decision procedure for $W'$ from $HTP(\mathbb {Z}[W^{-1}])$ can succeed uniformly on a set of measure $1$ , and regarding the consequences for the boundary sets of the $HTP$ operator in case $\mathbb {Z}$ has an existential definition in $\mathbb {Q}$ .
32

FURUTA, Koji. „A moment problem on rational numbers“. Hokkaido Mathematical Journal 46, Nr. 2 (Juni 2017): 209–26. http://dx.doi.org/10.14492/hokmj/1498788018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Trushechkin, Anton S., und Igor V. Volovich. „Functional classical mechanics and rational numbers“. P-Adic Numbers, Ultrametric Analysis, and Applications 1, Nr. 4 (15.11.2009): 361–67. http://dx.doi.org/10.1134/s2070046609040086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Poonen, Bjorn. „Multivariable polynomial injections on rational numbers“. Acta Arithmetica 145, Nr. 2 (2010): 123–27. http://dx.doi.org/10.4064/aa145-2-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bradley, Christopher J. „87.06 A theorem on rational numbers“. Mathematical Gazette 87, Nr. 508 (März 2003): 107–11. http://dx.doi.org/10.1017/s0025557200172201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Du, Juan, Ron Goldman und Xuhui Wang. „Rational curves over generalized complex numbers“. Journal of Symbolic Computation 93 (Juli 2019): 56–84. http://dx.doi.org/10.1016/j.jsc.2018.04.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Vallance, P. „Numbers alone cannot determine rational treatment“. BMJ 310, Nr. 6975 (04.02.1995): 330. http://dx.doi.org/10.1136/bmj.310.6975.330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Armstrong, Drew, Nicholas A. Loehr und Gregory S. Warrington. „Rational Parking Functions and Catalan Numbers“. Annals of Combinatorics 20, Nr. 1 (25.11.2015): 21–58. http://dx.doi.org/10.1007/s00026-015-0293-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Wimmer, Harald K. „Realizations of matrices of rational numbers“. Journal of Number Theory 25, Nr. 2 (Februar 1987): 169–83. http://dx.doi.org/10.1016/0022-314x(87)90023-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Gill, Judith. „Mathematics and gender: Beyond rational numbers?“ Mathematics Education Research Journal 9, Nr. 3 (November 1997): 343–46. http://dx.doi.org/10.1007/bf03217323.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

BENIOFF, PAUL. „COMPLEX RATIONAL NUMBERS IN QUANTUM MECHANICS“. International Journal of Modern Physics B 20, Nr. 11n13 (20.05.2006): 1730–41. http://dx.doi.org/10.1142/s021797920603425x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A binary representation of complex rational numbers and their arithmetic is described that is not based on qubits. It takes account of the fact that 0s in a qubit string do not contribute to the value of a number. They serve only as place holders. The representation is based on the distribution of four types of systems, corresponding to +1, -1, +i, -i, along an integer lattice. Complex rational numbers correspond to arbitrary products of four types of creation operators acting on the vacuum state. An occupation number representation is given for both bosons and fermions.
42

Félix, Yves, und Jean-Claude Thomas. „Rational Betti numbers of configuration spaces“. Topology and its Applications 102, Nr. 2 (April 2000): 139–49. http://dx.doi.org/10.1016/s0166-8641(98)00148-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Alkan, Emre. „Series representing transcendental numbers that are not U-numbers“. International Journal of Number Theory 11, Nr. 03 (31.03.2015): 869–92. http://dx.doi.org/10.1142/s1793042115500487.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Using integral representations with carefully chosen rational functions as integrands, we find new families of transcendental numbers that are not U-numbers, according to Mahler's classification, represented by a series whose terms involve rising factorials and reciprocals of binomial coefficients analogous to Apéry type series. Explicit descriptions of these numbers are given as linear combinations with coefficients lying in a suitable real algebraic extension of rational numbers using elementary functions evaluated at arguments belonging to the same field. In this way, concrete examples of transcendental numbers which can be expressed as combinations of classical mathematical constants such as π and Baker periods are given together with upper bounds on their wn measures.
44

Cilleruelo, J., D. S. Ramana und O. Ramaré. „The number of rational numbers determined by large sets of integers“. Bulletin of the London Mathematical Society 42, Nr. 3 (18.04.2010): 517–26. http://dx.doi.org/10.1112/blms/bdq021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

KWON, DOYONG. „A devil's staircase from rotations and irrationality measures for Liouville numbers“. Mathematical Proceedings of the Cambridge Philosophical Society 145, Nr. 3 (November 2008): 739–56. http://dx.doi.org/10.1017/s0305004108001606.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractFrom Sturmian and Christoffel words we derive a strictly increasing function Δ:[0,∞) → . This function is continuous at every irrational point, while at rational points, left-continuous but not right-continuous. Moreover, it assumes algebraic integers at rationals, and transcendental numbers at irrationals. We also see that the differentiation of Δ distinguishes some irrationality measures of real numbers.
46

Moss, Joan. „Research, Reflection, Practice: Introducing Percents in Linear Measurement to Foster an Understanding of Rational-Number Operations“. Teaching Children Mathematics 9, Nr. 6 (Februar 2003): 335–39. http://dx.doi.org/10.5951/tcm.9.6.0335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
How do we foster computational fluency with rational numbers when this topic is known to pose so many conceptual challenges for young students? How can we help students understand the operations of rational numbers when their grasp of the quantities involved in the rational-number system is often very limited? Traditional instruction in rational numbers focuses on rules and memorization. Teachers often give students instructions such as, “To add fractions, first find a common denominator, then add only the numerators” or “To add and subtract decimal numbers, line up the decimals, then do your calculations.”
47

Lewis, Leslie D. „Irrational Numbers Can In-Spiral You“. Mathematics Teaching in the Middle School 12, Nr. 8 (April 2007): 442–46. http://dx.doi.org/10.5951/mtms.12.8.0442.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Introducing students to the pythagorean theorem presents a natural context for investigating what irrational numbers are and how they differ from rational numbers. This artistic project allows students to visualize, discuss, and create a product that displays irrational and rational numbers.
48

Malcolmson, Peter, Frank Okoh und Vasuvedan Srinivas. „Factorial Fermat curves over the rational numbers“. Colloquium Mathematicum 142, Nr. 2 (2016): 285–300. http://dx.doi.org/10.4064/cm142-2-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Morozov, A. S., und J. K. Truss. „On computable automorphisms of the rational numbers“. Journal of Symbolic Logic 66, Nr. 3 (September 2001): 1458–70. http://dx.doi.org/10.2307/2695118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractThe relationship between ideals I of Turing degrees and groups of I-recursive automorphisms of the ordering on rationals is studied. We discuss the differences between such groups and the group of all automorphisms, prove that the isomorphism type of such a group completely defines the ideal I, and outline a general correspondence between principal ideals of Turing degrees and the first-order properties of such groups.
50

Adamczewski, Boris, Christiane Frougny, Anne Siegel und Wolfgang Steiner. „Rational numbers with purely periodic β -expansion“. Bulletin of the London Mathematical Society 42, Nr. 3 (15.04.2010): 538–52. http://dx.doi.org/10.1112/blms/bdq019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie