Dissertationen zum Thema „Numbers, Rational“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Numbers, Rational" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Ketkar, Pallavi S. (Pallavi Subhash). „Primitive Substitutive Numbers are Closed under Rational Multiplication“. Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278637/.
Der volle Inhalt der QuelleCoward, Daniel R. „Sums of two rational cubes“. Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320587.
Der volle Inhalt der QuelleBrown, Bruce John Lindsay. „The initial grounding of rational numbers : an investigation“. Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1006351.
Der volle Inhalt der QuelleShaughnessy, John F. „Finding Zeros of Rational Quadratic Forms“. Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/cmc_theses/849.
Der volle Inhalt der QuelleLozier, Stephane. „On simultaneous approximation to a real number and its cube by rational numbers“. Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28701.
Der volle Inhalt der QuelleMillsaps, Gayle M. „Interrelationships between teachers' content knowledge of rational number, their instructional practice, and students' emergent conceptual knowledge of rational number“. Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124225634.
Der volle Inhalt der QuelleTitle from first page of PDF file. Document formatted into pages; contains xviii, 339 p.; also includes graphics (some col.). Includes bibliographical references (p. 296-306). Available online via OhioLINK's ETD Center
Carbone, Rose Elaine. „Elementary Teacher Candidates’ Understanding of Rational Numbers: An International Perspective“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-79565.
Der volle Inhalt der QuelleClark, David Alan. „The Euclidean algorithm for Galois extensions of the rational numbers“. Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39408.
Der volle Inhalt der QuelleLet E be an elliptic curve over a number field F. Suppose ($F: doubq rbrack le 4$ and $F(E lbrack q rbrack ) not subseteq F$ for all primes q such that F contains a primitive $q sp{ rm th}$ root of unity, then the reduced elliptic curve $ tilde{E}(F sb{ bf p})$ is cyclic infinitely often. In general, if $ Gamma$ a subgroup of $E(F)$ with the range of $ Gamma$ sufficiently large, there are infinitely many prime ideals p of F such that the reduced curve $ tilde{E}(F sb{ bf p}) = Gamma sb{ bf p}$, where $ Gamma sb{ bf p}$ is the reduction modulo p of $ Gamma$.
Bruyns, P. „Aspects of the group of homeomorphisms of the rational numbers“. Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375224.
Der volle Inhalt der QuelleLORIO, MARCELO NASCIMENTO. „APPROXIMATIONS OF REAL NUMBERS BY RATIONAL NUMBERS: WHY THE CONTINUED FRACTIONS CONVERGING PROVIDE THE BEST APPROXIMATIONS?“ PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23981@1.
Der volle Inhalt der QuelleCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Frações Contínuas são representações de números reais que independem da base de numeração escolhida. Quando se trata de aproximar números reais por frações, a escolha da base dez oculta, frequentemente, aproximações mais eficientes do que as exibe. Integrar conceitos de aproximações de números reais por frações contínuas com aspectos geométricos traz ao assunto uma abordagem diferenciada e bastante esclarecedora. O algoritmo de Euclides, por exemplo, ao ganhar significado geométrico, se torna um poderoso argumento para a visualização dessas aproximações. Os teoremas de Dirichlet, de Hurwitz-Markov e de Lagrange comprovam, definitivamente, que as melhores aproximações de números reais veem das frações contínuas, estimando seus erros com elegância técnica matemática incontestável.
Continued fractions are representations of real numbers that are independent of the choice of the numerical basis. The choice of basis ten frequently hides more than shows efficient approximations of real numbers by rational ones. Integrating approximations of real numbers by continued fractions with geometrical interpretations clarify the subject. The study of geometrical aspects of Euclids algorithm, for example, is a powerful method for the visualization of continued fractions approximations. Theorems of Dirichlet, Hurwitz-Markov and Lagrange show that, definitely, the best approximations of real numbers come from continued fractions, and the errors are estimated with elegant mathematical technique.
Pham, Van Anh. „Loop Numbers of Knots and Links“. TopSCHOLAR®, 2017. http://digitalcommons.wku.edu/theses/1952.
Der volle Inhalt der QuelleAmaca, Edgar Gilbuena. „On rational functions with Golden Ratio as fixed point /“. Online version of thesis, 2008. http://hdl.handle.net/1850/6212.
Der volle Inhalt der QuelleBrown, Bruce J. L. „Numbers: a dream or reality? A return to objects in number learning“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-82378.
Der volle Inhalt der QuelleTobias, Jennifer. „Preservice Elementary Teachers' Diverlopment of Rational Number Understanding Through the Social Perspective and the Relationship Among Social and Individual Environments“. Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4233.
Der volle Inhalt der QuellePh.D.
Department of Teaching and Learning Principles
Education
Education PhD
Tolmie, Julie, und julie tolmie@techbc ca. „Visualisation, navigation and mathematical perception: a visual notation for rational numbers mod1“. The Australian National University. School of Mathematical Sciences, 2000. http://thesis.anu.edu.au./public/adt-ANU20020313.101505.
Der volle Inhalt der QuelleRakotoniaina, Tahina. „Explicit class field theory for rational function fields“. Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1993.
Der volle Inhalt der QuelleMoss, Joan. „Deepening children's understanding of rational numbers, a developmental model and two experimental studies“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0021/NQ49900.pdf.
Der volle Inhalt der QuelleTolmie, Julie. „Visualisation, navigation and mathematical perception : a visual notation for rational numbers mod 1“. View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20020313.101505/index.html.
Der volle Inhalt der QuelleConley, Randolph M. „A survey of the Minkowski?(x) function“. Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=3055.
Der volle Inhalt der QuelleTobias, Jennifer M. „Preservice elementary teachers' development of rational number understanding through the social perspective and the relationship among social and individual environments“. Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002737.
Der volle Inhalt der QuelleZangiacomo, Tassia Roberta [UNESP]. „Sobre as construções dos sistemas numéricos: N, Z, Q e R“. Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/149948.
Der volle Inhalt der QuelleApproved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-24T17:23:14Z (GMT) No. of bitstreams: 1 zangiacomo_tr_me_rcla.pdf: 1004175 bytes, checksum: 12925ba240f8d9a89e295b32b2efb13e (MD5)
Made available in DSpace on 2017-03-24T17:23:15Z (GMT). No. of bitstreams: 1 zangiacomo_tr_me_rcla.pdf: 1004175 bytes, checksum: 12925ba240f8d9a89e295b32b2efb13e (MD5) Previous issue date: 2017-02-20
Este trabalho tem como objetivo construir os sistemas numéricos usuais, a saber, o conjunto dos números naturais N, o conjunto dos números inteiros Z, o conjunto dos números racionais Q e o conjunto dos números reais R. Iniciamos o trabalho tratando de noções sobre conjuntos e relações binárias. Em seguida, apresentamos o conjunto dos números naturais, definido através dos axiomas de Peano; o conjunto dos números inteiros via uma relação de equivalência com o conjunto dos números naturais; o conjunto dos números racionais, que são obtidos também via relação de equivalência, mas dessa vez com o conjunto dos números inteiros; a construção do conjunto dos números reais, feita via cortes no conjunto dos números racionais; e, para todos esses casos, mostramos a imersão do conjunto anterior no conjunto que surge na sequência. Por fim, observamos alguns materiais do ensino fundamental e médio com o intuito de investigar de que forma esses temas estão sendo apresentados para os alunos.
This work aims to construct the usual numerical systems, namely the set of natural numbers N, the set of integers Z, the set of rational numbers Q and the set of real numbers R. We begin the work dealing with notions about sets and binary relations. Next, we present the set of natural numbers, defined by Peano's axioms; the set of integers via an equivalence relation with the set of natural numbers; the set of rational numbers, which are also obtained via equivalence relation, but this time with the set of integers; the construction of the set of real numbers, made through cuts in the set of rational numbers; end for all these cases we show the immersion of the previous set in the ensemble that appears in the sequence. Finally, we observed some materials in elementary school and high school in order to investigate how these themes are being presented to the students.
Torres, Mário Régis Rebouças. „Números algébricos e transcendentes“. reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25736.
Der volle Inhalt der QuelleSubmitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-09-15T05:05:08Z No. of bitstreams: 1 2017_dis_mrrtorres.pdf: 1191154 bytes, checksum: bcb31593bd1a02e84caee6bd47906dab (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-15T11:00:00Z (GMT) No. of bitstreams: 1 2017_dis_mrrtorres.pdf: 1191154 bytes, checksum: bcb31593bd1a02e84caee6bd47906dab (MD5)
Made available in DSpace on 2017-09-15T11:00:00Z (GMT). No. of bitstreams: 1 2017_dis_mrrtorres.pdf: 1191154 bytes, checksum: bcb31593bd1a02e84caee6bd47906dab (MD5) Previous issue date: 2017
The present work deals with algebraic and transcendent numbers characterizing them under different aspects. In particular we bring some demonstrations of the irrationality of the number π and the number of Euler, base of the natural logarithm. We will also present a demonstration of the transcendence of the number and based on the script of exercises proposed by D.G. de Figueiredo, in addition to a small historical survey on π, and, algebraic and transcendent numbers.
O presente trabalho trata sobre números algébricos e transcendentes caracterizando-os sob diferentes aspectos. Em particular trazemos algumas demonstrações da irracionalidade do número π e do número de Euler, base do logaritmo natural. Também apresentaremos uma demonstração da transcendência do número e baseada no roteiro de exercícios propostos por D.G. de Figueiredo em [4], além de um pequeno apanhado histórico sobre π, e, números algébricos e transcendentes.
Lewis, Raynold M. Otto Albert D. „The knowledge of equivalent fractions that children in grades 1, 2, and 3 bring to formal instruction“. Normal, Ill. Illinois State University, 1996. http://wwwlib.umi.com/cr/ilstu/fullcit?p9633409.
Der volle Inhalt der QuelleTitle from title page screen, viewed May 24, 2006. Dissertation Committee: Albert D. Otto (chair), Barbara S. Heyl, Cheryl A. Lubinski, Nancy K. Mack, Jane O. Swafford, Carol A. Thornton. Includes bibliographical references (leaves 188-198) and abstract. Also available in print.
Persson, Frida. „Hur introducerar och arbetar lärare med bråkräkning i grundskolans tidigare år?“ Thesis, Luleå tekniska universitet, Institutionen för konst, kommunikation och lärande, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75090.
Der volle Inhalt der QuelleDolma, Phuntsho. „The relationship between estimation skill and computational ability of students in years 5, 7 and 9 for whole and rational numbers“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2002. https://ro.ecu.edu.au/theses/742.
Der volle Inhalt der QuelleTrespalacios, Jesus. „The Effects of Two Generative Activities on Learner Comprehension of Part-Whole Meaning of Rational Numbers Using Virtual Manipulatives“. Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/26508.
Der volle Inhalt der QuellePh. D.
Bledsoe, Ann M. „Implementing the connected mathematics project : the interaction between student rational number understanding and classroom mathematical practices /“. free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3074374.
Der volle Inhalt der QuelleArmstrong, Barbara Ellen. „The use of rational number reasoning in area comparison tasks by elementary and junior high school students“. Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184910.
Der volle Inhalt der QuelleDugaich, Valéria Cristina Brumati. „Jogos como possibilidade para a melhoria do desempenho e das atitudes em relação às frações e aos decimais nos anos finais do ensino fundamental /“. Bauru, 2020. http://hdl.handle.net/11449/192109.
Der volle Inhalt der QuelleResumo: Tendo em vista que o desempenho em matemática de significativo percentual de alunos do 9º ano do ensino fundamental da Rede Estadual de Ensino no Sistema de Avaliação de Rendimento Escolar do Estado de São Paulo-SARESP, é ruim, no presente estudo, investigou-se a relação entre o uso de jogos pedagógicos, as atitudes e o desempenho em matemática. Teve como objetivo geral pesquisar e criar jogos como ferramenta pedagógica com potencial para criar situações e experiências favoráveis ao ensino das diferentes representações de um número racional, podendo impactar positivamente nas atitudes dos alunos dos anos finais do ensino fundamental em relação a esses números, bem como no desempenho em tarefas relacionadas a eles. Para tanto, foi necessário investigar: o desempenho desses alunos em matemática no SARESP; suas atitudes em relação à matemática e de modo específico, às frações e aos números decimais; como o uso dos jogos pode contribuir para o ensino e a aprendizagem dos números racionais, sobretudo para o reconhecimento das diferentes representações de um número racional; construir, testar e apresentar um caderno de jogos e por fim, avaliar o possível impacto que os mesmos podem produzir sobre as atitudes e aprendizagem de conceitos e procedimentos pertinentes aos números racionais. Realizou-se, então, uma pesquisa quanti-qualitativa sendo utilizados para a coleta de dados: questionário informativo do aluno; escalas de atitudes em relação à matemática, às frações e aos números d... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In view of the fact that the performance in mathematics of a significant percentage of students in the 9th grade of elementary school in the State Education Network in the School Performance Assessment System of the State of São Paulo-SARESP is poor, in the present study, we investigated the relationship between the use of educational games, attitudes and performance in mathematics. Its general objective was to research and create games as a pedagogical tool with the potential to create situations and experiences favorable to the teaching of different representations of a rational number, which may positively impact the attitudes of students in the final years of elementary school in relation to these numbers, as well as performance on related tasks. Therefore, it was necessary to investigate: the performance of these students in mathematics at SARESP; their attitudes towards mathematics and specifically, fractions and decimal numbers; how the use of games can contribute to the teaching and learning of rational numbers, especially to the recognition of different representations of a rational number; build, test and present a game book and, finally, evaluate the possible impact that they can have on attitudes and learning concepts and procedures relevant to rational numbers. Then, a quantitativequalitative research was carried out and used for data collection: student's questionnaire; scales of attitudes towards mathematics, fractions and decimal numbers (validated in the scop... (Complete abstract click electronic access below)
Mestre
Bezerra, Rafael Tavares Silva. „Frações contínuas - um estudo sobre "boas" aproximações“. Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9341.
Der volle Inhalt der QuelleApproved for entry into archive by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-30T13:17:30Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 799210 bytes, checksum: 8de2ace5434a5d92b8604de7573abfc4 (MD5)
Made available in DSpace on 2017-08-30T13:17:30Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 799210 bytes, checksum: 8de2ace5434a5d92b8604de7573abfc4 (MD5) Previous issue date: 2016-02-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The study of ontinued fra tions will start with some histori al fa ts, aiming at a better understanding of the subje t. We will bring the de nition of ontinued fra tions for a number α real, with the de nition for α rational and α irrational. The dis ussion will fo us on meaning results for the al ulation of redu ed and good approximations of irrational numbers, also aimed at determining the error between the redu ed and the irrational number. We will bring a study of the periodi ontinued fra tions, with emphasis on Lagrange theorem, whi h relates a periodi ontinued fra tion and a quadrati equation. Finishing with a fo us on problem solving, as the al ulation of ontinued fra tions of irrational numbers of the form √a2 + b, as well as proof of the irrationality of e by al ulating its ontinued.
O estudo das frações ontínuas terá ini io om alguns fatos históri os, visando uma melhor ompreensão do tema. Traremos a de nição de frações ontínuas para um erto número α real, apresentando a de nição para α ra ional e para α irra ional. A dis ussão será entrada em resultados importantes para o ál ulo de reduzidas e boas aproximações de números irra ionais, visando também a determinação do erro entre a reduzida e o número irra ional. Traremos um estudo sobre as frações ontínuas periódi as, om enfase ao teorema de Langrange, que rela iona uma fração ontínua periódi a e uma equação do segundo grau. Finalizando om enfoque na resolução de problemas, omo o ál ulo de frações ontínuas de números irra ionais da forma √a2 + b, assim omo a prova da irra ionalidade de e através do ál ulo de sua fração ontínua.
Johnson, Gwendolyn Joy. „Proportionality in Middle-School Mathematics Textbooks“. Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1670.
Der volle Inhalt der QuelleSilva, Guimarães Vieira da. „Irracionalidade e transcendência: aspectos elementares“. Universidade Federal do Tocantins, 2018. http://hdl.handle.net/11612/978.
Der volle Inhalt der QuelleThe present work has as its perspective the characterization of Rational and Irrational numbers, and their due applicability and variations regarding the algebraic and transcendental aspects. It is known that the number e (of Euler) can be classified as a transcendental number, that is, those that are not roots of any polynomial that has integer coefficients. In this assumption, the Number should be considered existent and irrational. The objective of this research is to characterize the factors that comprise the Rational and Irrational Numbers, offering the necessary understanding regarding Number e and its action in Algebraic and Transcendent Numbers. As a methodological resource, a literature review was used, based on qualitative and quantitative factors, in order to reflect on the proposed theme. Thus, in this present research, we sought to present information within the best ways and possibilities to favor understanding, considering the difficulty around this respective theme, due to its abstract feature, which makes it difficult for many to understand. Therefore, we highlight the initiatives and arguments around this thematic principle as a way of possibly fostering the interest of many by the same, and that such work may be relevant to the research needs of others desirous by this universe of research.
Lopes, Ana Paula. „Desenvolvimento do sentido de número no ensino básico: um estudo no sétimo ano de escolaridade“. Master's thesis, Universidade de Évora, 2010. http://hdl.handle.net/10174/20773.
Der volle Inhalt der QuelleLack, Brian S. „Student Participation in Mathematics Discourse in a Standards-based Middle Grades Classroom“. Digital Archive @ GSU, 2010. http://digitalarchive.gsu.edu/ece_diss/11.
Der volle Inhalt der QuelleWolffenbüttel, Reni. „Investigando números racionais com o software GeoGebra“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/133653.
Der volle Inhalt der QuelleThis research focuses on the teaching of rational numbers in Elementary School. It's aim is to analyse The potentialities and limitations of a teaching approach which proposes the use of the computer, particularly the dynamic geometry software GeoGebra, and the methodology of investigative math classes. This teaching approach was applied to students of the 8th year of an Elementary Education public school located at Sapucaia do Sul/RS, Brazil. These students already studied rational numbers at school in previous years. Thus this numerical field has been taken into account with the intention to check and bypass possible learning deficits, as well as increase knowledge of these numbers through investigations in which it could be observed some your characteristics. For this purpose, we proposed activities that simultaneously articulated different representations of rational numbers. The research is based in a qualitative paradigm. The teaching approach is presented at the end of this text as an alternative way for teaching rational numbers and other teachers in view of the analysis can consider its potentialities and limitations. From the results, we can highlight the visuals of the GeoGebra software, which favored students the understanding of rational numbers and their regularities and the investigative - technological scenario, which caused them to remain engaged in research as their learning agents.
Zakrzewski, Jennifer. „Effect of Interactive Digital Homework with an iBook on Sixth Grade Students' Mathematics Achievement and Attitudes when Learning Fractions, Decimals, and Percents“. Scholar Commons, 2015. https://scholarcommons.usf.edu/etd/5611.
Der volle Inhalt der QuelleSehlmeyer, Peter August. „Use of learning-logs in high school pre-algebra classes to improve mastery of rational numbers and linear equations for high-risk minority students“. CSUSB ScholarWorks, 1997. https://scholarworks.lib.csusb.edu/etd-project/1497.
Der volle Inhalt der QuelleMenezes, Fernanda Martinez. „Propriedades da expansão decimal“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-05102016-085553/.
Der volle Inhalt der QuelleThis work has as main objective the study of the decimal expansion of the real numbers. First we prove that every real number has at least one decimal expansion. Further, a method to find the decimal expansion of real numbers between 0 and 1 is provided as well as a the study of the decimal expansion of rational and irrational numbers. Next, the study presents methods that provide rational approximations to irrational numbers, in addition to the errors committed by these approximations. At the end, by its turn, the focus of the work is put on the analysis of the regularity (frequency) of the digits of the decimal expansion.
Eriksson, Helena. „Rationella tal som tal : Algebraiska symboler och generella modeller som medierande redskap“. Licentiate thesis, Stockholms universitet, Institutionen för matematikämnets och naturvetenskapsämnenas didaktik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129269.
Der volle Inhalt der QuelleLUCENA, Alexandre Marcelino de. „A metacognição no livro didático de matemática : um olhar sobre os números racionais“. Universidade Federal Rural de Pernambuco, 2013. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5414.
Der volle Inhalt der QuelleMade available in DSpace on 2016-08-22T12:36:17Z (GMT). No. of bitstreams: 1 Alexandre Marcelino de Lucena.pdf: 3286126 bytes, checksum: 9671213d688c6eb5a5db81b18682979f (MD5) Previous issue date: 2013-03-04
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The present study aimed to investigate the extent to which the activities of mathematics textbooks could favor the development of students' metacognitive strategies during its resolution. We direct our focus to the rational numbers, for being a very present content in students' daily lives, and even then, be a content that generates many learning difficulties. Decided to investigate two math textbooks approved by PNLD/2011 with different perspectives regarding to a teaching methodology, one more attuned to the new conceptions of teaching (LD 1) and other more traditional (LD 2). To answer our research question, initially we selected in the evaluation form of mathematics textbooks from the Guide PNLD/2011, the activities and skills that, in our view, could favor the development of metacognition. Then we seek to categorize activities selected according to the categories proposed by Araújo (2009). Following this analysis, we found that the two books surveyed offer few activities that may favor the development of metacognitive strategies, because the LD 1 only 7.87% of the activities of the chapters related to rational numbers were classified, while in LD 2 this number was lower, accounting for only 4.03% of the activities that may favor the development of metacognition. According to the categories of Araújo (2009), the few activities proposed by this material that favor metacognition propose reflections regarding the mathematical rules in 1st place (metacognitive strategies in order of procedure), followed by strategies that lead to reflections related to understanding the problem (strategies of the order of understanding the problem). We do not found the activities in the personal category, but on the other hand, we found problems that beckon metacognitive strategies in the sense of knowledge of knowledge itself, which did not appear in Araújo’s research (2009), and add these findings to its rating. Therefore, the results show that the two math textbooks surveyed bring in their chapters related to rational numbers, few activities that may favor the development of metacognitive strategies. However it is important to remember that the textbook is just a tool used by the teacher, then the development of metacognition in students will be dependent on the way the teacher uses this book and the activities proposed for this material.
A presente pesquisa teve como objetivo investigar em que medida as atividades de livros didáticos de matemática poderiam favorecer o desenvolvimento de estratégias metacognitivas dos alunos, durante a sua resolução. Direcionamos nosso foco para os números racionais, por ser um conteúdo muito presente no cotidiano dos estudantes e, mesmo assim, ser um conteúdo que gera muitas dificuldades de aprendizagem. Resolvemos investigar dois livros didáticos de matemática aprovados pelo PNLD/2011, com perspectivas distintas em relação à metodologia de ensino; um mais afinado com as novas concepções de ensino (LD 1) e outro mais tradicional (LD 2). Para responder nossa questão de pesquisa, inicialmente, selecionamos na ficha de avaliação dos livros didáticos de matemática do Guia PNLD/2011, as atividades e habilidades que, em nossa avaliação, poderiam favorecer o desenvolvimento da metacognição. Em seguida buscamos categorizar as atividades selecionadas de acordo com as categorias propostas por Araújo (2009). Após a referida análise, constatamos que os dois livros pesquisados disponibilizam poucas atividades que podem favorecer o desenvolvimento de estratégias metacognitivas, pois no LD 1 apenas 7,87% das atividades dos capítulos relacionados aos números racionais foram classificadas, enquanto que no LD 2 esse número foi menor, correspondendo a apenas 4,03% das atividades que podem favorecer o desenvolvimento da metacognição. De acordo com as categorias de Araújo (2009), as poucas atividades proposta por esse material que favorecem a metacognição, propõem reflexões em relação as regras matemáticas em 1º lugar (estratégias metacognitivas de ordem do procedimento), seguidas pelas estratégias que conduzem a reflexões relacionadas a compreensão do problema ( estratégias da ordem da compreensão do problema). Não encontramos atividades na categoria de ordem pessoal, mas em contrapartida, encontramos problemas que acenam para estratégias metacognitivas no sentido do conhecimento do próprio conhecimento, que não apareceram na pesquisa de Araújo (2009) e acrescentamos esses achados a sua classificação. Portanto, os resultados mostram que os dois livros didáticos de matemática pesquisados trazem, em seus capítulos referentes aos números racionais, poucas atividades que podem favorecer o desenvolvimento de estratégias metacognitivas. No entanto é importante lembrar que o livro didático é apenas uma ferramenta utilizada pelo professor, então o desenvolvimento da metacognição nos alunos vai estar na dependência da forma como o professor utiliza esse livro e as atividades propostas por esse material.
Dopico, Evelyn. „The Impact of Small Group Intervention Focusing on Operations with Rational Numbers on Students' Performance in the Florida Algebra I End-of-Course Examination“. Thesis, Nova Southeastern University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10845405.
Der volle Inhalt der QuelleIn Florida, passing the Algebra I end-of-course examination (EOCE) is a graduation requirement. The test measures knowledge of basic algebra. In spring 2015, the Department of Education introduced a different version of the test. For the first two administrations of the new test, the failure rate for 9th-grade students in the state was almost 50%. In contrast, the failure rate for students in the school where this study was implemented exceeded 70%. The purpose of this study was to determine the outcome of small group intervention focusing on operations with rational numbers of high school students’ performance on the Algebra I EOCE.
After analyzing several potential methods of instruction, small group instruction with the incorporation of the use of manipulatives, visuals, and guided inquiry was selected. In addition, the focus of the study was chosen to be operations with rational numbers, an area many researchers have identified as critical for student understanding of algebraic concepts. Twenty students from the target population of 600 10th and 11th grade students volunteered to participate in the study. These participants received three to six small group instruction sessions before retaking the test. In Sept 2016, all the students in the target population were administered the Algebra I EOCE again. A t-test yielded no significant difference in the learning gains of those who participated in the study and the other students in the target population. The implications of the results were that the interventions had no significant impact on student achievement. A possible reason for the lack of success could have been that six intervention sessions were not enough to produce significant results. It is recommended that future research includes a substantially larger number of interventions.
Smith, Scott. „An Exploratory Study of Fifth-Grade Students’ Reasoning About the Relationship Between Fractions and Decimals When Using Number Line-Based Virtual Manipulatives“. DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/5625.
Der volle Inhalt der QuelleValio, Denise Teresa de Camargo. „Frações: estratégias lúdicas no ensino da matemática“. Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/5964.
Der volle Inhalt der QuelleFinanciadora de Estudos e Projetos
The main aim of this master´s degree dissertation is the Mathematics teaching as well as the pedagogical and teaching practices related to the topic of rational numbers, particularly, fractions. The Fractions project, main title of this paper, aims at reaching not only basic education students but also educators with the objective of proposing understandable and attractive ways of teaching the subject matter in focus.The methodology applied in learning rational numbers in their fractional form was achieved through the playful and practical exercises involving two groups of 6th graders in the Fundamental from public schools. The material handling and display of results contribute to the construction of knowledge on Mathematics and consequently its learning. The teaching activities and experiments are the hallmark and engine for the development of this dissertation project due to the fact that the use of manipulable material (graded PET bottles, funnels and water) ensures originality to the teaching/learning relationship of Mathematics.Mathematical concepts such as equivalence and comparison between fractions and even basic operations (addition and subtraction) purposely confine in the teaching sequences carried out in the educational project.
O objetivo desta dissertação de mestrado é o Ensino da Matemática bem como as práticas didático-pedagógicas acerca do tema números racionais , em particular, frações. O projeto Frações , título principal desse trabalho, pretende atingir estudantes da Educação Básica e também educadores com a intenção de propor meios compreensíveis e atrativos do ensino da disciplina em questão. A metodologia empregada para a aprendizagem de números racionais na forma fracionária foi o exercício prático e lúdico envolvendo alunos de duas turmas do 6º ano do Ensino Fundamental da escola pública. A manipulação de materiais e a visualização de resultados concorrem para a construção do conhecimento da Matemática e, consequentemente, de seu aprendizado. As atividades e experimentações didáticas são a marca e o propulsor do desenvolvimento deste projeto dissertativo, pois ao empregar materiais manipuláveis (garrafas PET graduadas, funis e água) isto nos garante originalidade para a relação ensino/aprendizagem da Matemática. Os conceitos matemáticos como a equivalência e comparação entre frações e ainda as operações básicas (adição e subtração) circunscrevem, propositadamente, as sequências didáticas executadas no projeto educacional.
SANTOS, Ana Cláudia Guedes dos. „Uma contribuição ao ensino de números irracionais e de incomensurabilidade para o ensino médio“. Universidade Federal de Campina Grande, 2013. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2161.
Der volle Inhalt der QuelleMade available in DSpace on 2018-11-09T18:09:57Z (GMT). No. of bitstreams: 1 ANA CLÁUDIA GUEDES DOS SANTOS – DISSERTAÇÃO (PPGMat) 2013.pdf: 24981615 bytes, checksum: d442e8df3b32727e30684e3cbd516a9b (MD5) Previous issue date: 2013-08
Capes
Este trabalho tem como proposta pedagógica apresentar aos alunos o conceito de segmentos comensuráveis e de segmentos incomensuráveis, mostrando a importância desses conceitos para o estudo dos números racionais e irracionais. Veremos um processo de verificação da comensurabilidade de dois segmentos, doravante P.V.C.D.S, que é um processo geométrico de verificação de comensurabilidade de dois segmentos. A partir do P.V.C.D.S, apresentamos a demonstração clássica de que p2 é irracional, com uma abordagem geométrica, mostrando que o segmento do lado de um quadrado de medida 1 e o segmento de sua diagonal são incomensuráveis. Ainda apresentamos um estudo sobre expressões decimais, no qual será apresentado um teorema que nos permite verificar se uma fração irredutível possui representação decimal finita ou infinita e periódica. Também apresentamos outro teorema que nos permite transformar expressões decimais finitas e infinitas e periódicas na sua forma de fração. Por fim, apresentaremos algumas sugestões de atividades, que englobam todo conteúdo do presente TCC. Essas atividades foram aplicadas a uma turma de 1 ano do Ensino Médio de uma escola pública, e as respostas dos alunos estão anexadas ao trabalho.
This work have pedagogical proposed to introduce the concept of commensurable segments and incommensurable segments, showing the importance of these concepts for the study of rational and irrational numbers. We will stabelish a verification process to detect the mensurability of two segments, which is a geometric process. We present the classic demonstration that root of 2 is irrational with a geometric approach, showing that the segment of the side of a square measuring its diagonal are immeasurable. We still will present a study on decimal expressions, and prove a theorem that allows to check that an irreducible fraction has decimal representation finite or infinite and periodic. We also present another theorem that allows us to turn decimal expressions finite or infinite and periodic on its fraction form. Finally we present some suggestions for activities that include all content of the TCC. These activities have been applied to a class of 1st year of high school at a public school, and the students’ answers are attached to the work.
Valera, Alcir Rojas [UNESP]. „Uso social e escolar dos números racionais: representação fracionária e decimal“. Universidade Estadual Paulista (UNESP), 2003. http://hdl.handle.net/11449/90210.
Der volle Inhalt der QuelleOs números racionais apresentam-se como conteúdo que os alunos do Ensino Fundamental e Médio têm dificuldades para aprender. Parte dessas dificuldades decorre da diferença instituída entre o uso cotidiano dos números racionais pelo aluno e a maneira como são ensinados na escola e, também pelo desconhecimento, por parte da escola, da multiplicidade dos significados dos racionais. Enquanto o uso social centra-se na forma decimal o uso escolar recai mais sobre a forma fracionária dos números racionais. É uma separação indesejável que as práticas escolares trataram de acentuar ao longo do tempo. A partir de pesquisa bibliográfica e de estudo documental procurou-se caracterizar, nesse trabalho, a dicotomização existente entre o uso e o ensino da Matemática, que acabam sendo responsáveis por prejuízos na aprendizagem dos alunos. Isto pode ser verificado nos erros que os alunos cometeram nas provas oficiais (SARESP, SAEB...). Procurou-se analisar como essa separação vem sendo reforçada nos documentos oficiais, por meio das propostas pedagógicas e curriculares. Verificaram-se como diferentes documentos e publicações oficiais abordam os números racionais e tratam da articulação entre a perspectivas do uso escolar e a do uso cotidiano dos números racionais. Essa análise possibilitou compreender diferentes tipos de argumentações e justificativas para o ensino das frações, presentes nos currículos oficiais, bem como explicitar os conteúdos e metodologias adequadas às concepções apresentadas em tais documentos. Tudo isso possibilitou conhecer parte dos problemas que ocorrem com o ensino de frações e suas causas e por isso sugerir propostas que sinalizam para a sua superação. Embora o estabelecimento de relações entre o uso social e uso escolar ainda não ocorra de maneira efetiva, reconhece-se que aquelas orientações...
Valera, Alcir Rojas. „Uso social e escolar dos números racionais : representação fracionária e decimal /“. Marília : [s.n.], 2003. http://hdl.handle.net/11449/90210.
Der volle Inhalt der QuelleBanca: Célia Maria Carolino Pires
Banca: José Carlos Miguel
Abstract: The rational numbers are shown as a subject that the students of the Elementary and High School have difficulties to learn. Some of these difficulties are due to the difference established between the daily use of the rational numbers by the student and the way it is taught at the school and, also for the ignorance, on the part of the school, of the multiplicity of their meanings. While the social use is centered in the decimal form, the school use lies more on the fractional form of the rational numbers. It is an undesirable separation that the school practices have accentuated through time. This study tried to characterize the existent dichotomization between it the use and the teaching of the Mathematics, starting from bibliographical research and of documental study that end up being responsible for damages in the students' learning.. This can be verified in the mistakes committed in the official tests (SARESP, SAEB...). It was sought to analyze how that separation has been reinforced in the official documents, by the pedagogic proposals and curricula. It was verified how the different documents and official publications deal with the rational numbers and the articulation among perspectives of the school use and the daily use of the rational numbers. That analysis made possible to understand different types of arguments and justifications for the teaching of the fractions, present in the official curricula, as well as explain the contents and the most appropriate methodologies of the conceptions presented in such documents. All this made possible to know part of the problems that happen with the teaching of fractions and their causes, and so, make suggestions on how these problems can be solved. Although the establishment of relationships between the social use and school use still doesn't happen in an effective way, it is recognized... (Complete abstract, click electronic address below)
Resumo: Os números racionais apresentam-se como conteúdo que os alunos do Ensino Fundamental e Médio têm dificuldades para aprender. Parte dessas dificuldades decorre da diferença instituída entre o uso cotidiano dos números racionais pelo aluno e a maneira como são ensinados na escola e, também pelo desconhecimento, por parte da escola, da multiplicidade dos significados dos racionais. Enquanto o uso social centra-se na forma decimal o uso escolar recai mais sobre a forma fracionária dos números racionais. É uma separação indesejável que as práticas escolares trataram de acentuar ao longo do tempo. A partir de pesquisa bibliográfica e de estudo documental procurou-se caracterizar, nesse trabalho, a dicotomização existente entre o uso e o ensino da Matemática, que acabam sendo responsáveis por prejuízos na aprendizagem dos alunos. Isto pode ser verificado nos erros que os alunos cometeram nas provas oficiais (SARESP, SAEB...). Procurou-se analisar como essa separação vem sendo reforçada nos documentos oficiais, por meio das propostas pedagógicas e curriculares. Verificaram-se como diferentes documentos e publicações oficiais abordam os números racionais e tratam da articulação entre a perspectivas do uso escolar e a do uso cotidiano dos números racionais. Essa análise possibilitou compreender diferentes tipos de argumentações e justificativas para o ensino das frações, presentes nos currículos oficiais, bem como explicitar os conteúdos e metodologias adequadas às concepções apresentadas em tais documentos. Tudo isso possibilitou conhecer parte dos problemas que ocorrem com o ensino de frações e suas causas e por isso sugerir propostas que sinalizam para a sua superação. Embora o estabelecimento de relações entre o uso social e uso escolar ainda não ocorra de maneira efetiva, reconhece-se que aquelas orientações... (Resumo completo, clicar acesso eletrônico abaixo)
Mestre
Queiroz, Fabiana Moura de. „Um estudo sobre construções dos Números Reais“. Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4555.
Der volle Inhalt der QuelleApproved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-05-19T18:18:56Z (GMT) No. of bitstreams: 2 Dissertação - Fabiana Moura de Queiroz - 2015.pdf: 3272912 bytes, checksum: bb75fba8c8a71a93692d37b8aa3ba9c2 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-05-19T18:18:56Z (GMT). No. of bitstreams: 2 Dissertação - Fabiana Moura de Queiroz - 2015.pdf: 3272912 bytes, checksum: bb75fba8c8a71a93692d37b8aa3ba9c2 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-03-06
The main objective of this paper is to present the subtle passage of rational numbers to the real numbers, using a construction via Dedekind cuts and other by Cauchy sequences .We present a construction of rational numbers by equivalence classes, so that the reader has a foundation that serves as a support for a good understanding of proposed constructions of real numbers . We use the axiomatic method for buildings that are made on real numbers, in order to show the existence of an orderly and complete field and characterize it. It is also discussed, and a more synthesized form, the real numbers and its application to elementary and high school students.
O objetivo central deste trabalho é apresentar a sutil passagem dos números racionais aos números reais, utilizando uma construção via Cortes de Dedekind e outra por sequências de Cauchy. Apresenta-se uma construção dos números racionais por classes de equivalência, para que o leitor tenha um alicerce que sirva de apoio para um bom entendimento das construções propostas dos números reais. Utiliza-se o método axiomático para as construções que são feitas sobre números reais, com o intuito de mostrar a existência de um corpo ordenado e completo e caracterizá-lo. Discute-se ainda, e de uma forma mais sintetizada, os números reais e a sua aplicação com alunos de ensino fundamental e médio.
Santos, Simone de Carvalho. „Uma construção geométrica dos números reais“. Universidade Federal de Sergipe, 2015. https://ri.ufs.br/handle/riufs/6478.
Der volle Inhalt der QuelleThis study aims to present a geometric construction of real numbers characterizing them as numbers that express a measure. In this construction, each point in an oriented line represents the measure of a segment (a real number). Based on ve axioms of Euclidean geometry it was de ned an order relation, a method to add and multiply points so that it was possible to demonstrate that the line has a full ordered body of algebraic structure that we call the set of real numbers. To do so, it were presented historical elements that allow us to understand the emergence of irrational numbers as a solution to the insu ciency of rational numbers with respect to the measuring problem, the evolution of the concept of number, as well as the importance that the strict construction of real numbers had to the Foundations of Mathematics. We display a construction of rational numbers from the integernumbers as motivation for construction of numerical sets. Using the notion of measure,we show a geometric interpretation of rational numbers linking them to the points of an oriented line to demonstrate that they leave holes in the line and conclude on the need to build a set that contains the rational numbers and that ll all the points of a line. The theme is of utmost importance to the teaching of mathematics because one of the major goal of basic education is to promote understanding of numbers and operations, to develop number sense and to develop uency in the calculation. To achieve this, it is necessary to assimilate the r
O presente trabalho tem por objetivo apresentar uma construção geométrica dos números reais caracterizando-os como números que expressam uma medida. Nesta construção cada ponto de uma reta orientada representa a medida de um segmento (um número real), com base nos cinco axiomas da geometria euclidiana de niu-se uma relação de ordem, um método para somar e multiplicar pontos de tal forma que fosse possível demonstrar que a reta possui uma estrutura algébrica de corpo ordenado completo a qual chamamos de conjunto dos números reais. Para tanto, foram apresentados elementos históricos que permitem compreender o surgimento dos números irracionais como solução para a insu - ciência dos números racionais no que diz respeito ao problema de medida, a evolução do próprio conceito de número, bem como a importância que a construção rigorosa dos nú- meros reais tiveram para os Fundamentos da Matemática. Exibimos uma construção dos números racionais a partir dos números inteiros como motivação para construções de conjuntos numéricos. Usando a noção de medida mostramos uma interpretação geométrica dos números racionais associando-os aos pontos de uma reta orientada para demonstrar que eles deixam buracos na reta e concluir sobre a necessidade de construir um conjunto que contenha os números racionais e que preencham todos os pontos de uma reta. O tema é de extrema importância para o ensino da matemática, visto que um dos principais objetivos do ensino básico é promover a compreensão dos números e das operações, desenvolver o sentido de número e desenvolver a uência no cálculo, sendo necessário para tal assimilar os números reais, em especial os irracionais, os quais são tratados a partir do ensino fundamental.
Pimentel, Thiago Trindade. „Construção dos números reais via cortes de Dedekind“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-18102018-164352/.
Der volle Inhalt der QuelleThe purpose of this dissertation is to present the construction of the real numbers from Dedekind cuts. For this, we study the natural numbers, the integers, the rational numbers and some properties involved. Then, based on the rational numbers, we construct the field of the real numbers and establish their properties. A Dedekind cut, named after the German mathematician Richard Dedekind, is a partition of the rational numbers into two non-empty sets A and B, such that each element of A is smaller than all elements of B and A does not contain a maximum element. If B contains a minimum element, then the cut represents this minimum element, which is a rational number. If B does not contain a minimal element, then the cut defines a single irrational number, which \"fills the gap\" between A and B. In this way, one can construct the set of real numbers from the rationals and establish their properties. This dissertation provides students who like Mathematics a solid basis in one of the pillars of Mathematics, which is the set of real numbers and their algebraic operations and properties. This text will be very important for your educational background and performance.
Matos, Raphael Neves de. „Uma contribui??o para o ensino aprendizagem dos n?meros racionais: a rela??o entre d?zimas peri?dicas e progress?es geom?tricas“. UFVJM, 2017. http://acervo.ufvjm.edu.br/jspui/handle/1/1641.
Der volle Inhalt der QuelleApproved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2018-04-20T14:12:28Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) raphael_neves_matos.pdf: 4286914 bytes, checksum: 4faddab9001b8b035017adfd9a2d6d75 (MD5)
Made available in DSpace on 2018-04-20T14:12:28Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) raphael_neves_matos.pdf: 4286914 bytes, checksum: 4faddab9001b8b035017adfd9a2d6d75 (MD5) Previous issue date: 2017
Este trabalho teve como objetivo principal apresentar uma contribui??o para o ensino aprendizagem dos n?meros racionais, destacando principalmente a rela??o entre d?zimas peri?dicas e progress?es geom?tricas. A metodologia utilizada permitiu a an?lise da abordagem e sequ?ncia did?tica dos t?picos D?zima peri?dica e Progress?o Geom?trica Infinita, contemplada nos livros did?ticos aprovados pelo Programa Nacional do Livro Did?tico. Nesta abordagem as fra??es e os n?meros decimais, especialmente os decimais infinitos e peri?dicos, e por consequ?ncia o c?lculo de sua fra??o geratriz, foram objetos de estudo centrais e instigadores dessa pesquisa. Realizou-se um estudo mais detalhado sobre a representa??o decimal dos n?meros racionais e analisando a compreens?o destes n?meros em n?vel fundamental e m?dio. Foi ainda proposto uma abordagem das maneiras mais usuais do c?lculo da fra??o geratriz, bem como, explorado a rela??o entre os decimais infinitos e peri?dicos e as progress?es geom?tricas. Durante o desenvolvimento deste trabalho, foi poss?vel perceber que h? mais de uma abordagem did?tica dos t?picos de ensino inerentes ao tema central analisado. O reconhecimento de que a parte decimal das d?zimas peri?dicas pode ser expressa como uma soma infinita de parcelas que, a partir de certo ponto, descreve uma progress?o geom?trica infinita de raz?o compreendida entre zero e um, ? um ponto chave na proposta de interven??o apresentada para a sala de aula. Diante desse quadro, foi verificado a ordem atualmente seguida pelos professores do 1? Ano do Ensino M?dio, o que permitiu constatar que os conte?dos D?zimas Peri?dicas e Progress?es Geom?tricas Infinitas s?o tratados sem liga??o significativa e, diante disso, foi proposta uma altera??o na ordem de abordagem desses conte?dos no Ensino M?dio. Ao final foram propostas algumas sugest?es de atividades resolvidas e outras para serem desenvolvidas em sala de aula.
Disserta??o (Mestrado Profissional) ? Programa de P?s-Gradua??o Matem?tica, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2017.
The aim of this work was to present a contribution to the teaching of rational numbers, emphasizing mainly the relation between periodic tithe and geometric progression. The methodology used allowed the analysis of the approach and didactic sequence of the topics Periodic Dizima and Infinite Geometric Progression, contemplated in textbooks approved by the National Textbook Program. In this approach fractions and decimal numbers, especially the infinite and periodic decimals, and consequently the calculation of their generative fraction, were central objects and instigators of this research. A more detailed study on the decimal representation of rational numbers was carried out and the understanding of these numbers at the fundamental and medium levels was analyzed. It was also proposed an approach of the most usual ways of calculating the generative fraction, as well as exploring the relationship between infinite and periodic decimals and geometric progressions. During the development of this work, it was possible to perceive that there is more of a didactic approach of the teaching topics inherent to the central theme analyzed. The recognition that the decimal part of the periodic tithe can be expressed as an infinite sum of plots which, from a certain point, describes an infinite geometric progression of ratio between zero and one, is a key point in the proposal of intervention presented for the classroom. In view of this situation, we verified the order currently being followed by teachers of the 1? Year of High School, which allowed to verify that the Periodic Dictionaries and Infinite Geometric Progressions are treated without significant connection and, accordingly, a change was proposed in order to approach these contents in High School. At the end, some suggestions for solved activities and others to be developed in the classroom were proposed.