Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Numbers, Rational“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Numbers, Rational" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Numbers, Rational"
., Jyoti. „Rational Numbers“. Journal of Advances and Scholarly Researches in Allied Education 15, Nr. 5 (01.07.2018): 220–22. http://dx.doi.org/10.29070/15/57856.
Der volle Inhalt der QuelleScott Malcom, P. „Understanding Rational Numbers“. Mathematics Teacher 80, Nr. 7 (Oktober 1987): 518–21. http://dx.doi.org/10.5951/mt.80.7.0518.
Der volle Inhalt der QuelleLennerstad, Håkan, und Lars Lundberg. „Decomposing rational numbers“. Acta Arithmetica 145, Nr. 3 (2010): 213–20. http://dx.doi.org/10.4064/aa145-3-1.
Der volle Inhalt der QuellePEYTON JONES, SIMON. „12 Rational Numbers“. Journal of Functional Programming 13, Nr. 1 (Januar 2003): 149–52. http://dx.doi.org/10.1017/s0956796803001412.
Der volle Inhalt der QuelleFrougny, Christiane, und Karel Klouda. „Rational base number systems forp-adic numbers“. RAIRO - Theoretical Informatics and Applications 46, Nr. 1 (22.08.2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.
Der volle Inhalt der QuelleXin Liu, Xin Liu, Xiaomeng Liu Xin Liu, Dan Luo Xiaomeng Liu, Gang Xu Dan Luo und Xiu-Bo Chen Gang Xu. „Confidentially Compare Rational Numbers under the Malicious Model“. 網際網路技術學刊 25, Nr. 3 (Mai 2024): 355–63. http://dx.doi.org/10.53106/160792642024052503002.
Der volle Inhalt der QuelleRoy, Damien, und Johannes Schleischitz. „Numbers with Almost all Convergents in a Cantor Set“. Canadian Mathematical Bulletin 62, Nr. 4 (03.12.2018): 869–75. http://dx.doi.org/10.4153/s0008439518000450.
Der volle Inhalt der QuelleBelin, Mervenur, und Gülseren Karagöz Akar. „Exploring Real Numbers as Rational Number Sequences With Prospective Mathematics Teachers“. Mathematics Teacher Educator 9, Nr. 1 (01.09.2020): 63–87. http://dx.doi.org/10.5951/mte.2020.9999.
Der volle Inhalt der QuelleKorhonen, Risto. „Approximation of real numbers with rational number sequences“. Proceedings of the American Mathematical Society 137, Nr. 01 (14.08.2008): 107–13. http://dx.doi.org/10.1090/s0002-9939-08-09479-3.
Der volle Inhalt der QuelleGong, Linming, Bo Yang, Tao Xue, Jinguang Chen und Wei Wang. „Secure rational numbers equivalence test based on threshold cryptosystem with rational numbers“. Information Sciences 466 (Oktober 2018): 44–54. http://dx.doi.org/10.1016/j.ins.2018.07.046.
Der volle Inhalt der QuelleDissertationen zum Thema "Numbers, Rational"
Ketkar, Pallavi S. (Pallavi Subhash). „Primitive Substitutive Numbers are Closed under Rational Multiplication“. Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278637/.
Der volle Inhalt der QuelleCoward, Daniel R. „Sums of two rational cubes“. Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320587.
Der volle Inhalt der QuelleBrown, Bruce John Lindsay. „The initial grounding of rational numbers : an investigation“. Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1006351.
Der volle Inhalt der QuelleShaughnessy, John F. „Finding Zeros of Rational Quadratic Forms“. Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/cmc_theses/849.
Der volle Inhalt der QuelleLozier, Stephane. „On simultaneous approximation to a real number and its cube by rational numbers“. Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28701.
Der volle Inhalt der QuelleMillsaps, Gayle M. „Interrelationships between teachers' content knowledge of rational number, their instructional practice, and students' emergent conceptual knowledge of rational number“. Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124225634.
Der volle Inhalt der QuelleTitle from first page of PDF file. Document formatted into pages; contains xviii, 339 p.; also includes graphics (some col.). Includes bibliographical references (p. 296-306). Available online via OhioLINK's ETD Center
Carbone, Rose Elaine. „Elementary Teacher Candidates’ Understanding of Rational Numbers: An International Perspective“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-79565.
Der volle Inhalt der QuelleClark, David Alan. „The Euclidean algorithm for Galois extensions of the rational numbers“. Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39408.
Der volle Inhalt der QuelleLet E be an elliptic curve over a number field F. Suppose ($F: doubq rbrack le 4$ and $F(E lbrack q rbrack ) not subseteq F$ for all primes q such that F contains a primitive $q sp{ rm th}$ root of unity, then the reduced elliptic curve $ tilde{E}(F sb{ bf p})$ is cyclic infinitely often. In general, if $ Gamma$ a subgroup of $E(F)$ with the range of $ Gamma$ sufficiently large, there are infinitely many prime ideals p of F such that the reduced curve $ tilde{E}(F sb{ bf p}) = Gamma sb{ bf p}$, where $ Gamma sb{ bf p}$ is the reduction modulo p of $ Gamma$.
Bruyns, P. „Aspects of the group of homeomorphisms of the rational numbers“. Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375224.
Der volle Inhalt der QuelleLORIO, MARCELO NASCIMENTO. „APPROXIMATIONS OF REAL NUMBERS BY RATIONAL NUMBERS: WHY THE CONTINUED FRACTIONS CONVERGING PROVIDE THE BEST APPROXIMATIONS?“ PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23981@1.
Der volle Inhalt der QuelleCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Frações Contínuas são representações de números reais que independem da base de numeração escolhida. Quando se trata de aproximar números reais por frações, a escolha da base dez oculta, frequentemente, aproximações mais eficientes do que as exibe. Integrar conceitos de aproximações de números reais por frações contínuas com aspectos geométricos traz ao assunto uma abordagem diferenciada e bastante esclarecedora. O algoritmo de Euclides, por exemplo, ao ganhar significado geométrico, se torna um poderoso argumento para a visualização dessas aproximações. Os teoremas de Dirichlet, de Hurwitz-Markov e de Lagrange comprovam, definitivamente, que as melhores aproximações de números reais veem das frações contínuas, estimando seus erros com elegância técnica matemática incontestável.
Continued fractions are representations of real numbers that are independent of the choice of the numerical basis. The choice of basis ten frequently hides more than shows efficient approximations of real numbers by rational ones. Integrating approximations of real numbers by continued fractions with geometrical interpretations clarify the subject. The study of geometrical aspects of Euclids algorithm, for example, is a powerful method for the visualization of continued fractions approximations. Theorems of Dirichlet, Hurwitz-Markov and Lagrange show that, definitely, the best approximations of real numbers come from continued fractions, and the errors are estimated with elegant mathematical technique.
Bücher zum Thema "Numbers, Rational"
Rational numbers: Poems. [Kirksville, Mo.]: Truman State University Press, 2000.
Den vollen Inhalt der Quelle findenH, Salzmann, Hrsg. The classical fields: Structural features of the real and rational numbers. Cambridge: Cambridge University Press, 2007.
Den vollen Inhalt der Quelle findenBellos, Alex. Here's Looking at Euclid: A Surprising Excursion through the Astonishing World of Math. New York: Free Press, 2010.
Den vollen Inhalt der Quelle findenBellos, Alex. Here's looking at Euclid: A surprising excursion through the astonishing world of math. New York: Free Press, 2010.
Den vollen Inhalt der Quelle findenHertzberg, Hendrik. One million. New York: Times Books, 1993.
Den vollen Inhalt der Quelle findenHertzberg, Hendrik. One million. New York: Abrams Image, 2009.
Den vollen Inhalt der Quelle findenS, Bezuk Nadine, Hrsg. Understanding rational numbers and proportions. Reston, Va: National Council of Teachers of Mathematics, 1994.
Den vollen Inhalt der Quelle findenP, Carpenter Thomas, Fennema Elizabeth und Romberg Thomas A, Hrsg. Rational numbers: An integration of research. Hillsdale, N.J: Lawrence Erlbaum Associates, 1992.
Den vollen Inhalt der Quelle findenMary, Stroh, und Sopris West Inc, Hrsg. TransMath: Making sense of rational numbers. Longmont, Colo: Cambium Learning/Sopris West, 2010.
Den vollen Inhalt der Quelle findenLappan, Glenda. Bits and pieces I: Understanding rational numbers. Palo Alto, CA: Dale Seymour Publications, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Numbers, Rational"
Eriksson, Kenneth, Donald Estep und Claes Johnson. „Rational Numbers“. In Applied Mathematics: Body and Soul, 71–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05796-4_7.
Der volle Inhalt der QuelleBhattacharjee, Meenaxi, Rögnvaldur G. Möller, Dugald Macpherson und Peter M. Neumann. „Rational Numbers“. In Notes on Infinite Permutation Groups, 77–86. Gurgaon: Hindustan Book Agency, 1997. http://dx.doi.org/10.1007/978-93-80250-91-5_9.
Der volle Inhalt der QuelleBhattacharjee, Meenaxi, Dugald Macpherson, Rögnvaldur G. Möller und Peter M. Neumann. „Rational numbers“. In Lecture Notes in Mathematics, 77–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0092559.
Der volle Inhalt der QuelleShah, Nita H., und Vishnuprasad D. Thakkar. „Rational Numbers“. In Journey from Natural Numbers to Complex Numbers, 47–60. Boca Raton : CRC Press, 2021. | Series: Advances in mathematics and engineering: CRC Press, 2020. http://dx.doi.org/10.1201/9781003105244-3.
Der volle Inhalt der QuelleNoël, Marie-Pascale, und Giannis Karagiannakis. „Rational numbers“. In Effective Teaching Strategies for Dyscalculia and Learning Difficulties in Mathematics, 236–94. London: Routledge, 2022. http://dx.doi.org/10.4324/b22795-6.
Der volle Inhalt der QuelleOvchinnikov, Sergei. „Rational Numbers“. In Real Analysis: Foundations, 1–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64701-8_1.
Der volle Inhalt der QuelleStillwell, John. „Rational Points“. In Numbers and Geometry, 111–42. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_4.
Der volle Inhalt der QuelleKramer, Jürg, und Anna-Maria von Pippich. „The Rational Numbers“. In Springer Undergraduate Mathematics Series, 93–139. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69429-0_3.
Der volle Inhalt der QuelleStillwell, John. „The Rational Numbers“. In Elements of Algebra, 18–37. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-3976-3_2.
Der volle Inhalt der QuelleKay, Anthony. „Rational Numbers, ℚ“. In Number Systems, 107–48. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9780429059353-6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Numbers, Rational"
Vălcan, Teodor-Dumitru. „Structures of Fields of Rational Numbers, Isomorphic Between Them“. In 10th International Conference Education, Reflection, Development. European Publisher, 2023. http://dx.doi.org/10.15405/epes.23056.8.
Der volle Inhalt der QuellePion, Sylvain, und Chee K. Yap. „Constructive root bound for k-ary rational input numbers“. In the nineteenth conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/777792.777831.
Der volle Inhalt der QuelleCheng, Howard, und Eugene Zima. „On accelerated methods to evaluate sums of products of rational numbers“. In the 2000 international symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/345542.345581.
Der volle Inhalt der QuelleMay, John P., B. David Saunders und David Harlan Wood. „Numerical techniques for computing the inertia of products of matrices of rational numbers“. In ISSAC07: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1277500.1277520.
Der volle Inhalt der QuelleDaghigh, Hassan, Somayeh Didari und Ruholla Khodakaramian Gilan. „A deterministic algorithm for discrete logarithm on some special elliptic curves over rational numbers“. In 2015 12th International Iranian Society of Cryptology Conference on Information Security and Cryptology (ISCISC). IEEE, 2015. http://dx.doi.org/10.1109/iscisc.2015.7387912.
Der volle Inhalt der QuellePinto, Hélia. „THE GALLERY WALK AS A WAY TO TRAIN PRESERVICE TEACHERS FOR TEACHING RATIONAL NUMBERS“. In 16th International Conference on Education and New Learning Technologies. IATED, 2024. http://dx.doi.org/10.21125/edulearn.2024.1370.
Der volle Inhalt der QuelleGe, Q. J., und Donglai Kang. „Rational Bézier and B-Spline Ruled Surface Patches“. In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dac-1495.
Der volle Inhalt der QuellePomrehn, Leonard P., und Panos Y. Papalambros. „Optimal Approximation of Real Values Using Rational Numbers With Application to the Kinematic Design of Gearboxes“. In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0384.
Der volle Inhalt der QuelleAliyev, Yagub N. „The 3x+1 Problem For Rational Numbers : Invariance of Periodic Sequences in 3x+1 Problem“. In 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2020. http://dx.doi.org/10.1109/aict50176.2020.9368585.
Der volle Inhalt der QuelleAnnathurai, K., Z. Zamzamir, S. Shafie, F. Rahmat, R. Masri und N. Hasan. „Development of InterFrac Matching Kit integrates game-based learning in the form 1 rational numbers topic“. In INTERNATIONAL CONFERENCE ON INNOVATION IN MECHANICAL AND CIVIL ENGINEERING (i-MACE 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0149564.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Numbers, Rational"
Lu, Chao. A Computational Library Using P-adic Arithmetic for Exact Computation With Rational Numbers in Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada456488.
Der volle Inhalt der QuelleLutz, Carsten. Adding Numbers to the SHIQ Description Logic - First Results. Aachen University of Technology, 2001. http://dx.doi.org/10.25368/2022.117.
Der volle Inhalt der QuelleGonzales, Lorenzo. Ir-Rational Number Institute Report 2017-2018. Office of Scientific and Technical Information (OSTI), Juni 2018. http://dx.doi.org/10.2172/1440467.
Der volle Inhalt der QuelleRosenfeld. L51741 Development of a Model for Fatigue Rating Shallow Unrestrained Dents. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 1997. http://dx.doi.org/10.55274/r0010337.
Der volle Inhalt der QuelleADA JOINT PROGRAM OFFICE ARLINGTON VA. Ada (Tradename) Compiler Validation Summary Report: Certificate Number: 880815W1.09143 Rational VAX-VMS, Version 2.0.45 Rational R1000 Series 200 Model 20 and VAX-11/750 (Host) and (Target). Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada205908.
Der volle Inhalt der QuelleKaiser, Frederick M. Interagency Collaborative Arrangements and Activities: Types, Rationales, Considerations (Interagency Paper, Number 5, June 2011). Fort Belvoir, VA: Defense Technical Information Center, Juni 2011. http://dx.doi.org/10.21236/ada551190.
Der volle Inhalt der QuelleXiong, Wei. Rational Optimization of Microbial Processing for High Yield CO2-to-Isopropanol Conversion: Cooperative Research and Development Final Report, CRADA Number CRD-20-17114. Office of Scientific and Technical Information (OSTI), Januar 2024. http://dx.doi.org/10.2172/2283521.
Der volle Inhalt der QuelleMunoz, Laura, Giulia Mascagni, Wilson Prichard und Fabrizio Santoro. Should Governments Tax Digital Financial Services? A Research Agenda to Understand Sector-Specific Taxes on DFS. Institute of Development Studies (IDS), Februar 2022. http://dx.doi.org/10.19088/ictd.2022.002.
Der volle Inhalt der QuelleVISTA RESEARCH CORP TUCSON AZ. Ada Compiler Validation Summary Report: Certificate Number: 940630W1. 11369 Rational Software Corporation VADS Sun4 => PowerPC, Product Number 2100- 01444, Version 6.2 Sun 4 Model SPARCcenter 2000 under Solaris 2.3 => Motorola MVME160 (PowerPC 601 Bare Machine). Fort Belvoir, VA: Defense Technical Information Center, Juli 1994. http://dx.doi.org/10.21236/ada285107.
Der volle Inhalt der QuelleEmmerson, Stephen. Modulations through time. Norges Musikkhøgskole, August 2018. http://dx.doi.org/10.22501/nmh-ar.530427.
Der volle Inhalt der Quelle