Auswahl der wissenschaftlichen Literatur zum Thema „Numbers“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Numbers" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Numbers"

1

Montémont, Véronique. „Roubaud’s number on numbers“. Journal of Romance Studies 7, Nr. 3 (Dezember 2007): 111–21. http://dx.doi.org/10.3828/jrs.7.3.111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Carbó-Dorca, Ramon. „Mersenne Numbers, Recursive Generation of Natural Numbers, and Counting the Number of Prime Numbers“. Applied Mathematics 13, Nr. 06 (2022): 538–43. http://dx.doi.org/10.4236/am.2022.136034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sudhakaraiah, A., A. Madhankumar, Pagidi Obulesu und A. Lakshmi Sowjanya. „73 Is the Only Largest Prime Power Number and Composite Power Numbers“. International Journal of Science and Research (IJSR) 12, Nr. 11 (05.11.2023): 1318–23. http://dx.doi.org/10.21275/sr231118184617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Steele, G. Ander. „Carmichael numbers in number rings“. Journal of Number Theory 128, Nr. 4 (April 2008): 910–17. http://dx.doi.org/10.1016/j.jnt.2007.08.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hofweber, T. „Number Determiners, Numbers, and Arithmetic“. Philosophical Review 114, Nr. 2 (01.04.2005): 179–225. http://dx.doi.org/10.1215/00318108-114-2-179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

., Jyoti. „Rational Numbers“. Journal of Advances and Scholarly Researches in Allied Education 15, Nr. 5 (01.07.2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Boast, Carl A., und Paul R. Sanberg. „Locomotor behavior: numbers, numbers, numbers!“ Pharmacology Biochemistry and Behavior 27, Nr. 3 (Juli 1987): 543. http://dx.doi.org/10.1016/0091-3057(87)90364-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

KÖKEN, Fikri, und Emre KANKAL. „Altered Numbers of Fibonacci Number Squared“. Journal of New Theory, Nr. 45 (31.12.2023): 73–82. http://dx.doi.org/10.53570/jnt.1368751.

Der volle Inhalt der Quelle
Annotation:
We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a specific value $\{a\}$ from the square of the $n^{th}$ Fibonacci numbers $G^{(2)}_{F(n)}(a)$ and $H^{(2)}_{F(n)}(a)$. These numbers are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like formulas. Moreover, we explore greatest common divisor (GCD) sequences of r-successive terms of altered Fibonacci numbers represented by $\left\{G^{(2)}_{F(n), r}(a)\right\}$ and $\left\{H^{(2)}_{F(n), r}(a)\right\}$ such that $r\in\{1,2,3\}$ and $a\in\{1,4\}$. The sequences are based on the GCD properties of consecutive terms of the Fibonacci numbers and structured as periodic or Fibonacci sequences.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jędrzejak, Tomasz. „Congruent numbers over real number fields“. Colloquium Mathematicum 128, Nr. 2 (2012): 179–86. http://dx.doi.org/10.4064/cm128-2-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fu, Ruiqin, Hai Yang und Jing Wu. „The Perfect Numbers of Pell Number“. Journal of Physics: Conference Series 1237 (Juni 2019): 022041. http://dx.doi.org/10.1088/1742-6596/1237/2/022041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Numbers"

1

Namasivayam, M. „Entropy numbers, s-numbers and embeddings“. Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356519.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Allagan, Julian Apelete D. Johnson Peter D. „Choice numbers, Ohba numbers and Hall numbers of some complete k-partite graphs“. Auburn, Ala, 2009. http://hdl.handle.net/10415/1780.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fransson, Jonas. „Generalized Fibonacci Series Considered modulo n“. Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-26844.

Der volle Inhalt der Quelle
Annotation:
In this thesis we are investigating identities regarding Fibonacci sequences. In particular we are examiningthe so called Pisano period, which is the period for the Fibonacci sequence considered modulo n to repeatitself. The theory shows that it suces to compute Pisano periods for primes. We are also looking atthe same problems for the generalized Pisano period, which can be described as the Pisano period forthe generalized Fibonacci sequence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Anderson, Crystal Lynn. „An Introduction to Number Theory Prime Numbers and Their Applications“. Digital Commons @ East Tennessee State University, 2006. https://dc.etsu.edu/etd/2222.

Der volle Inhalt der Quelle
Annotation:
The author has found, during her experience teaching students on the fourth grade level, that some concepts of number theory haven't even been introduced to the students. Some of these concepts include prime and composite numbers and their applications. Through personal research, the author has found that prime numbers are vital to the understanding of the grade level curriculum. Prime numbers are used to aide in determining divisibility, finding greatest common factors, least common multiples, and common denominators. Through experimentation, classroom examples, and homework, the author has introduced students to prime numbers and their applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chipatala, Overtone. „Polygonal numbers“. Kansas State University, 2016. http://hdl.handle.net/2097/32923.

Der volle Inhalt der Quelle
Annotation:
Master of Science
Department of Mathematics
Todd Cochrane
Polygonal numbers are nonnegative integers constructed and represented by geometrical arrangements of equally spaced points that form regular polygons. These numbers were originally studied by Pythagoras, with their long history dating from 570 B.C, and are often referred to by the Greek mathematicians. During the ancient period, polygonal numbers were described by units which were expressed by dots or pebbles arranged to form geometrical polygons. In his "Introductio Arithmetica", Nicomachus of Gerasa (c. 100 A.D), thoroughly discussed polygonal numbers. Other Greek authors who did remarkable work on the numbers include Theon of Smyrna (c. 130 A.D), and Diophantus of Alexandria (c. 250 A.D). Polygonal numbers are widely applied and related to various mathematical concepts. The primary purpose of this report is to define and discuss polygonal numbers in application and relation to some of these concepts. For instance, among other topics, the report describes what triangle numbers are and provides many interesting properties and identities that they satisfy. Sums of squares, including Lagrange's Four Squares Theorem, and Legendre's Three Squares Theorem are included in the paper as well. Finally, the report introduces and proves its main theorems, Gauss' Eureka Theorem and Cauchy's Polygonal Number Theorem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tomasini, Alejandro. „Wittgensteinian Numbers“. Pontificia Universidad Católica del Perú - Departamento de Humanidades, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/112986.

Der volle Inhalt der Quelle
Annotation:
In this paper I reconstruct the tractarian view of natural numbers. i show how Wittgenstein uses his conceptual apparatus (operatlon, formal concept, internal property, logical form) to elaborate analternative to the logicist definition of number. Finally, I briefly examine sorneof the criticisms that have been raised against it.
En este trabajo reconstruyo la concepción tractariana de los números naturales. Muestro cómo Wittgenstein usa su aparato conceptual (operación, conceptoformal, propiedad interna, forma lógica) para elaborar una definición de número alternativa a la logicista. Por último, examino brevemente algunas de lascríticas que se han elevado en su contra.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hostetler, Joshua. „Surreal Numbers“. VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2935.

Der volle Inhalt der Quelle
Annotation:
The purpose of this thesis is to explore the Surreal Numbers from an elementary, con- structivist point of view, with the intention of introducing the numbers in a palatable way for a broad audience with minimal background in any specific mathematical field. Created from two recursive definitions, the Surreal Numbers form a class that contains a copy of the real numbers, transfinite ordinals, and infinitesimals, combinations of these, and in- finitely many numbers uniquely Surreal. Together with two binary operations, the surreal numbers form a field. The existence of the Surreal Numbers is proven, and the class is constructed from nothing, starting with the integers and dyadic rationals, continuing into the transfinite ordinals and the remaining real numbers, and culminating with the infinitesimals and uniquely surreal numbers. Several key concepts are proven regarding the ordering and containment properties of the numbers. The concept of a surreal continuum is introduced and demonstrated. The binary operations are explored and demonstrated, and field properties are proven, using many methods, including transfinite induction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ho, Kwan-hung, und 何君雄. „On the prime twins conjecture and almost-prime k-tuples“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B29768421.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chan, Ching-yin, und 陳靖然. „On k-tuples of almost primes“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/195967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ketkar, Pallavi S. (Pallavi Subhash). „Primitive Substitutive Numbers are Closed under Rational Multiplication“. Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278637/.

Der volle Inhalt der Quelle
Annotation:
Lehr (1991) proved that, if M(q, r) denotes the set of real numbers whose expansion in base-r is q-automatic i.e., is recognized by an automaton A = (Aq, Ar, ao, δ, φ) (or is the image under a letter to letter morphism of a fixed point of a substitution of constant length q) then M(q, r) is closed under addition and rational multiplication. Similarly if we let M(r) denote the set of real numbers α whose base-r digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution then in an attempt to generalize Lehr's result we show that the set M(r) is closed under multiplication by rational numbers. We also show that M(r) is not closed under addition.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Numbers"

1

Badiou, Alain. Number and numbers. Cambridge: Polity Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

1934-, Deza M., Hrsg. Figurate numbers. Singapore: World Scientific, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schleich, Wolfgang. Prime numbers 101: A primer on number theory. Hoboken, N.J: Wiley, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

illustrator, Knight Paula, Hrsg. Numbers. Chicago, Illinois: Norwood House Press, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Aboff, Marcie. If you were an odd number. Mankato, MN: Picture Window Books, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Glynne-Jones, Tim. The book of numbers. Edison, NJ: Chartwell Books, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Montgomery, Hugh L. Multiplicative number theory I: Classical theory. Cambridge, UK: Cambridge University Press, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Parshin, A. N. Number Theory IV: Transcendental Numbers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ming, Nai-Ta. New theory of real numbers especially regarding "infinite" and "zero". Hamburg: Verlag Dr. Kovač, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dave, Hewitt, Wigley Alan und Association of Teachers of Mathematics., Hrsg. Developing number: Complements, numbers, tables. Derby: Association of Teachers of Mathematics, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Numbers"

1

Hart, F. Mary. „Numbers and Number Systems“. In Guide to Analysis, 1–24. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09390-8_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hart, F. Mary. „Numbers and Number Systems“. In Guide to Analysis, 3–29. London: Macmillan Education UK, 2001. http://dx.doi.org/10.1007/978-1-349-87194-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Loya, Paul. „Numbers, Numbers, and More Numbers“. In Amazing and Aesthetic Aspects of Analysis, 29–146. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6795-7_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vorobiew, Nicolai N. „Number-Theoretic Properties of Fibonacci Numbers“. In Fibonacci Numbers, 51–87. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8107-4_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cornil, Jack-Michel, und Philippe Testud. „Real Numbers, Complex Numbers“. In An Introduction to Maple V, 57–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56729-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rassias, Michael Th. „Perfect numbers, Fermat numbers“. In Problem-Solving and Selected Topics in Number Theory, 29–35. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0495-9_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fisher, R. B., T. P. Breckon, K. Dawson-Howe, A. Fitzgibbon, C. Robertson, E. Trucco und C. K. I. Williams. „Numbers“. In Dictionary of Computer Vision and Image Processing, 1–6. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119286462.ch1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Vince, John. „Numbers“. In Mathematics for Computer Graphics, 3–9. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6290-2_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Oberguggenberger, Michael, und Alexander Ostermann. „Numbers“. In Analysis for Computer Scientists, 1–11. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-446-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Vince, John. „Numbers“. In Mathematics for Computer Graphics, 5–30. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7336-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Numbers"

1

Lim, John T., und Larry C. Thaler. „Numbers, Numbers Everywhere!“ In SMPTE Advanced Television and Electronic Imaging Conference. IEEE, 1993. http://dx.doi.org/10.5594/m00684.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Milinkovic, Luka, Marija Antic und Zoran Cica. „Pseudo-random number generator based on irrational numbers“. In TELSIKS 2011 - 2011 10th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services. IEEE, 2011. http://dx.doi.org/10.1109/telsks.2011.6143212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Watanabe, Ricardo Augusto, Estevao Esmi Laureano und Cibele Cristina Trinca Watanabe. „Fuzzy Octonion Numbers and Fuzzy Hypercomplex Numbers“. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2019. http://dx.doi.org/10.1109/fuzz-ieee.2019.8858970.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Irmak, Nurettin, und Abdullah Açikel. „On perfect numbers close to Tribonacci numbers“. In 1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5047878.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hajime, Kaneko, und Takao Komatsu. „Expansion of real numbers by algebraic numbers“. In DIOPHANTINE ANALYSIS AND RELATED FIELDS: DARF 2007/2008. AIP, 2008. http://dx.doi.org/10.1063/1.2841897.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Berthe, Valerie, und Laurent Imbert. „On converting numbers to the double-base number system“. In Optical Science and Technology, the SPIE 49th Annual Meeting, herausgegeben von Franklin T. Luk. SPIE, 2004. http://dx.doi.org/10.1117/12.558895.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jeong, Young-Seob, Kyojoong Oh, Chung-Ki Cho und Ho-Jin Choi. „Pseudo Random Number Generation Using LSTMs and Irrational Numbers“. In 2018 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2018. http://dx.doi.org/10.1109/bigcomp.2018.00091.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sirisantisamrid, Kaset. „Identification of Thai characters and numbers on plate number“. In 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE). IEEE, 2017. http://dx.doi.org/10.1109/iciteed.2017.8250447.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Robinson, Susan J., Graceline Williams, Aman Parnami, Jinhyun Kim, Emmett McGregor, Dana Chandler und Ali Mazalek. „Storied numbers“. In the 2014 ACM international conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2602299.2602308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

„Page numbers“. In 2008 Annual Reliability and Maintainability Symposium. IEEE, 2008. http://dx.doi.org/10.1109/rams.2008.4925850.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Numbers"

1

Reynolds, J. K., und J. Postel. Assigned numbers. RFC Editor, April 1985. http://dx.doi.org/10.17487/rfc0943.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Reynolds, J. K., und J. Postel. Assigned numbers. RFC Editor, Dezember 1985. http://dx.doi.org/10.17487/rfc0960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Reynolds, J. K., und J. Postel. Assigned numbers. RFC Editor, November 1986. http://dx.doi.org/10.17487/rfc0990.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Reynolds, J. K., und J. Postel. Internet numbers. RFC Editor, März 1987. http://dx.doi.org/10.17487/rfc0997.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Reynolds, J. K., und J. Postel. Assigned numbers. RFC Editor, Mai 1987. http://dx.doi.org/10.17487/rfc1010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Romano, S., und M. K. Stahl. Internet numbers. RFC Editor, November 1987. http://dx.doi.org/10.17487/rfc1020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Reynolds, J. K., und J. Postel. Assigned numbers. RFC Editor, März 1990. http://dx.doi.org/10.17487/rfc1060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Romano, S., M. K. Stahl und M. Recker. Internet numbers. RFC Editor, August 1988. http://dx.doi.org/10.17487/rfc1062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Romano, S., M. K. Stahl und M. Recker. Internet numbers. RFC Editor, August 1989. http://dx.doi.org/10.17487/rfc1117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kirkpatrick, S., M. K. Stahl und M. Recker. Internet numbers. RFC Editor, Juli 1990. http://dx.doi.org/10.17487/rfc1166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie