Auswahl der wissenschaftlichen Literatur zum Thema „Nuclear magnetic resonace spectroscopy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nuclear magnetic resonace spectroscopy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Nuclear magnetic resonace spectroscopy"

1

Lehmann, Teresa. „Nuclear Magnetic Resonance Spectroscopy“. Magnetochemistry 4, Nr. 2 (20.04.2018): 20. http://dx.doi.org/10.3390/magnetochemistry4020020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

MATSUNAGA, Sho. „Nuclear Magnetic Resonance Spectroscopy“. Journal of the Japan Society of Colour Material 64, Nr. 4 (1991): 247–54. http://dx.doi.org/10.4011/shikizai1937.64.247.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

FUJII, Naoyuki. „Nuclear Magnetic Resonance Spectroscopy“. Journal of the Japan Society of Colour Material 78, Nr. 12 (2005): 572–82. http://dx.doi.org/10.4011/shikizai1937.78.572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rabenstein, Dallas L., und Wei Guo. „Nuclear magnetic resonance spectroscopy“. Analytical Chemistry 60, Nr. 12 (15.06.1988): 1–28. http://dx.doi.org/10.1021/ac00163a001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Balaban, Robert S. „Nuclear Magnetic Resonance Spectroscopy“. Academic Radiology 2 (September 1995): S136—S137. http://dx.doi.org/10.1016/s1076-6332(12)80056-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Haw, James F. „Nuclear magnetic resonance spectroscopy“. Analytical Chemistry 64, Nr. 12 (15.06.1992): 243–54. http://dx.doi.org/10.1021/ac00036a014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jelinski, Lynn W. „Nuclear magnetic resonance spectroscopy“. Analytical Chemistry 62, Nr. 12 (15.06.1990): 212–23. http://dx.doi.org/10.1021/ac00211a017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mc Cully, Kevin, Donna Mancini und Sanford Levine. „Nuclear Magnetic Resonance Spectroscopy“. Chest 116, Nr. 5 (November 1999): 1434–41. http://dx.doi.org/10.1378/chest.116.5.1434.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Smith, Ian C. P., und Dorothea E. Blandford. „Nuclear magnetic resonance spectroscopy“. Analytical Chemistry 67, Nr. 12 (15.06.1995): 509–18. http://dx.doi.org/10.1021/ac00108a037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Das, Susanta. „Nuclear magnetic resonance spectroscopy“. Resonance 9, Nr. 1 (Januar 2004): 34–49. http://dx.doi.org/10.1007/bf02902527.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Nuclear magnetic resonace spectroscopy"

1

Patel, Sunil U. „Nuclear magnetic resonance spectroscopy and ultrasound“. Thesis, Aston University, 1989. http://publications.aston.ac.uk/9708/.

Der volle Inhalt der Quelle
Annotation:
The work described in this thesis is directed to the examination of the hypothesis that ultrasound may be used to perturb molecular motion in the liquid phase. These changes can then be detected by nuclear magnetic resonance (NMR) in spin-lattice and spin-spin relaxation times. The objective being to develop a method capable of reducing the pulsed NMR acquisition times of slowly relaxing nuclei. The thesis describes the theoretical principles underlying both NMR spectroscopy and ultrasonics with particular attention being paid to factors that impinge on testing the above hypothesis. Apparatus has been constructed to enable ultrasound at frequencies between 1 and 10 mega-hertz with a variable power up to 100W/cm-2 to be introduced in the NMR sample. A broadband high frequency generator is used to drive PZT piezo-electric transducer via various transducer to liquid coupling arrangements. A commercial instrument of 20 kilo-hertz has also been employed to test the above hypothesis and also to demonstrate the usefulness of ultrasound in sonochemistry. The latter objective being, detection of radical formation in monomer and polymer ultrasonic degradation. The principle features of the results obtained are: Ultrasonic perturbation of T1 is far smaller for pure liquids than is for mixtures. The effects appear to be greater on protons (1H) than on carbon-13 nuclei (13C) relaxation times. The observed effect of ultrasonics is not due to temperature changes in the sample. As the power applied to the transducer is progressively increased T1 decreases to a minimum and then increases. The T1's of the same nuclei in different functional groups are influenced to different extents by ultrasound. Studies of the 14N resonances from an equimolar mixture of N, N-dimethylformamide and deuterated chloroform with ultrasonic frequencies at 1.115, 6, 6.42 and 10 MHz show that as the frequency is increased the NMR signal to noise ratio decreases to zero at the Larmor frequency of 6.42 MHz and then again rises. This reveals the surprising indication that an effect corresponding to nuclear acoustic saturation in the liquid may be observable. Ultrasonic irradiation of acidified ammonium chloride solution at and around 6.42 MHz appears to cause distinctive changes in the proton-nitrogen J coupling resonance at 89.56 MHz. Ultrasonic irradiation of N, N-dimethylacetamide at 2 KHz using the lowest stable power revealed the onset of coalescence in the proton spectrum. The corresponding effect achieved by direct heating required a temperature rise of approximately 30oC. The effects of low frequency (20 KHz) on relaxation times appear to be nil. Detection of radical formation proved difficult but is still regarded as the principle route for monomer and polymer degradation. The initial hypothesis is considered proven with the results showing significant changes in the mega-hertz region and none at 20 KHz.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Norwood, Timothy John. „Nuclear magnetic resonance in inhomogeneous magnetic fields“. Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24875.

Der volle Inhalt der Quelle
Annotation:
The work described in this thesis was initiated in an attempt to overcome the limitations imposed upon NMR spectroscopy by magnetic field inhomogeneity in two specific areas: high resolution spectroscopy in isotropic liquids, and chemical shift resolved NMR imaging in isotropic liquids. In both cases magnetic field inhomogeneity may degrade the resolution of spectra to such an extent that no useful information can be obtained from them. In high resolution NMR spectroscopy it is necessary to be able to extract accurately the parameters present within the spectrum such as chemical shifts, coupling constants and peak areas. In chemical shift resolved imaging experiments the requirements are less stringent; and it is only necessary that the resonances of different chemical species be resolved. However, even the less stringent requirements of NMR imaging are often difficult to meet as the sample volumes required are often several orders of magnitude larger than those required in conventional high resolution NMR spectroscopy. The use of zero-quantum coherence has been investigated as a potential solution to the magnetic field inhomogeneity problem in both of these areas. Zero-quantum coherences are independent of magnetic field inhomogeneity and contain the parameters desired in both cases, though they are displayed in a way which differs from conventional NMR spectra. In this thesis, existing zero-quantum coherence experiments have been evaluated for use with inhomogeneous magnetic fields, and, where necessary, adapted for this purpose. Several completely new experiments have been developed for producing broad-band decoupled zero-quantum coherence spectra and also for presenting coupling constants and chemical shifts in a manner which is as close to conventional NMR spectra as possible, hence facilitating ease of use. Zero-quantum coherence has been evaluated as a tool for identifying unknown compounds and also for identifying the components of complex mixtures by "signature" recognition. Both decoupled and non-decoupled zero-quantum coherence experiments are adapted to provide imaging experiments which allow the separation of the images of different chemical species in inhomogeneous magnetic fields. The two-dimensional J-resolved experiment is also adapted for this purpose.
Science, Faculty of
Chemistry, Department of
Graduate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wu, Xi-Li. „New techniques in nuclear magnetic resonance spectroscopy“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385872.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Claridge, Timothy David William. „Protein studies by nuclear magnetic resonance spectroscopy“. Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303628.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wormald, Philip. „Nuclear magnetic resonance spectroscopy of vinylidenefluoride polymers“. Thesis, Durham University, 2005. http://etheses.dur.ac.uk/2615/.

Der volle Inhalt der Quelle
Annotation:
High-resolution solid- and solution state NMR techniques have been applied in the study of a Semi crystalline fluoropolymer Poly(vinylidienfluoride) (PVDF) and a vinylidienfluoride telomer. The application of standard solution-state experiments with high power decoupling and two-dimensional techniques has provided a greater understanding of the structure of these two fluoropolymers. Specifically, Cosy and Tocsy experiments gave information on signals normally related to end groups and to previously unidentified structures, which suggest the presence of at least a second major structure. 19F solid-state Magic Angle spinning Nuclear Magnetic Resonance (MAs- NMR) using relaxation filters in pulse sequences, has revealed fundamental differences relating to morphology and structure. The location of reverse units in the amorphous and crystalline domains is investigated by fluorine Tip filtered Radio Frequency Driven Recoupling (RFDR) and spin-diffusion experiments. These experiments proved that the reverse units are dominant in the amorphous phase, yet could have association with rigid species. Furthermore, signals generally associated with crystalline domains are not homogenie in character. The presence of a highly mobile species was detected and investigated using the delayed acquisition technique and T2 measurements. This showed the possibility of end-group signal in the spectral region normally associated with reverse groups. Furthermore, proton Tip measurements of nascent and annealed PVDF, recorded at variable temperature are related to molecular motion and debated with respect to the effect of spin diffusion on populations. The relationship between thermal events and thermal history of PVDF and its effect on molecular motion is debated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jones, David Nigel Mark. „Nuclear magnetic resonance spectroscopy of bacterial polysaccharides“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316713.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Xu, Ping. „New methods in nuclear magnetic resonance spectroscopy“. Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cavanagh, John. „New techniques in nuclear magnetic resonance spectroscopy“. Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293707.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Barker, P. B. „New techniques in nuclear magnetic resonance“. Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Duce, Suzanne Louise. „Nuclear magnetic resonance imaging and spectroscopy of food“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Nuclear magnetic resonace spectroscopy"

1

Bovey, F. A. Nuclear magnetic resonance spectroscopy. 2. Aufl. London: Academic Press, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bovey, Frank A. Nuclear magnetic resonance spectroscopy. 2. Aufl. San Diego: Academic Press, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

J, Mowthorpe David, und ACOL (Project), Hrsg. Nuclear magnetic resonance spectroscopy. Chichester [West Sussex]: Published on behalf of ACOL, London, by J. Wiley, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bovey, Frank Alden. Nuclear magnetic resonance spectroscopy. 2. Aufl. San Diego: Academic Press, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dutta, Mala. Nuclear magnetic resonance spectroscopy. Delhi: Ivy Publishig House, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hore, P. J. Nuclear magnetic resonance. Oxford: Oxford University Press, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Clinical magnetic resonance spectroscopy. New York: Plenum Press, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Levy, George C. Carbon-13 nuclear magnetic resonance spectroscopy. 2. Aufl. Malabar, Fla: Krieger, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Patel, Sunil Unka. Nuclear magnetic resonance spectroscopy and ultrasound. Birmingham: Aston University. Department of ChemicalEngineering and Applied Chemistry, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Levy, George C. Carbon-13 nuclear magnetic resonance spectroscopy. Malabar, Fla: Krieger Pub. Co., 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Nuclear magnetic resonace spectroscopy"

1

Aliev, Abil E. „Solid state NMR spectroscopy“. In Nuclear Magnetic Resonance, 139–87. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788010665-00139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Aliev, A. E., und R. V. Law. „Solid state NMR spectroscopy“. In Nuclear Magnetic Resonance, 294–347. Cambridge: Royal Society of Chemistry, 2015. http://dx.doi.org/10.1039/9781782622758-00294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Atta-ur-Rahman. „Experimental Procedures in NMR Spectroscopy“. In Nuclear Magnetic Resonance, 87–139. New York, NY: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kemp, William. „Nuclear Magnetic Resonance Spectroscopy“. In Organic Spectroscopy, 101–241. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-15203-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Atta-ur-Rahman. „Chemical Shift in 1H-NMR Spectroscopy“. In Nuclear Magnetic Resonance, 1–33. New York, NY: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Atta-ur-Rahman. „Spin—Spin Coupling in 1-NMR Spectroscopy“. In Nuclear Magnetic Resonance, 34–86. New York, NY: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ashbrook, Sharon E., und Daniel M. Dawson. „NMR spectroscopy of minerals and allied materials“. In Nuclear Magnetic Resonance, 1–52. Cambridge: Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782624103-00001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Robien, Wolfgang. „Nuclear Magnetic Resonance Spectroscopy“. In Handbook of Spectroscopy, 469–87. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602305.ch23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Robien, Wolfgang. „Nuclear Magnetic Resonance Spectroscopy“. In Handbook of Spectroscopy, 1749–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527654703.ch54.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Atta-ur-Rahman. „Special Pulse Sequences and Two-Dimensional NMR Spectroscopy“. In Nuclear Magnetic Resonance, 202–313. New York, NY: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Nuclear magnetic resonace spectroscopy"

1

Ernst, R. R. „Nuclear magnetic resonance Fourier transform spectroscopy“. In Optical 3D Measurement Techniques II: Applications in Inspection, Quality Control, and Robotics, herausgegeben von Armin Gruen und Heribert Kahmen. SPIE, 1994. http://dx.doi.org/10.1117/12.169824.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Verkhoglazova, E. V., D. A. Kupriyanov, Carlos Granja, Claude Leroy und Ivan Stekl. „Spectroscopy in Magnetic Resonance Tomography“. In Nuclear Physics Medthods and Accelerators in Biology and Medicine. AIP, 2007. http://dx.doi.org/10.1063/1.2825818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

„Structural Analysis of Nuclear Magnetic Resonance Spectroscopy Data“. In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004321902120222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pinilla, Samuel, Kareth León, Daniel Molina, Ariolfo Camacho und Henry Arguello. „Subsampling Schemes for the 2D Nuclear Magnetic Resonance Spectroscopy“. In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cosi.2018.ctu5d.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bilgic, A. M., J. W. Kunze, V. Stegemann, M. Zoeteweij und J. Hogendoorn. „B6.2 - Multiphase flow metering with nuclear magnetic resonance spectroscopy“. In AMA Conferences 2015. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2015. http://dx.doi.org/10.5162/sensor2015/b6.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Meireles, L. T. P., C. Ravnås, M. J. Welch und I. L. Fabricius. „Failure characterization in geomechanical testing using nuclear magnetic resonance spectroscopy“. In Chalk 2018 Engineering in Chalk. ICE Publishing, 2018. http://dx.doi.org/10.1680/eiccf.64072.541.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Li, Xiaonan, Guoqiang Liu, Shiqiang Li, Hui Xia und Yong Wang. „Planar-coil-based Micro-detection in Nuclear Magnetic Resonance Spectroscopy“. In 2018 5th International Conference on Systems and Informatics (ICSAI). IEEE, 2018. http://dx.doi.org/10.1109/icsai.2018.8599468.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Scott, Katherine N., David C. Wilson, Angela P. Bruner, Teresa A. Lyles, Brandon Underhill, Edward A. Geiser, J. Ray Ballinger, James D. Scott und Christine B. Stopka. „Automatic analysis of nuclear-magnetic-resonance-spectroscopy clinical research data“. In 26th AIPR Workshop: Exploiting New Image Sources and Sensors, herausgegeben von J. Michael Selander. SPIE, 1998. http://dx.doi.org/10.1117/12.300074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gottstein, Eva, Dirk Lachenmeier und Thomas Kuballa. „Applications of Nuclear Magnetic Resonance Spectroscopy for Food Authenticity Control“. In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.444.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fricke, Florian, Safdar Mahmood, Javier Hoffmann, Marcelo Brandalero, Sascha Liehr, Simon Kern, Klas Meyer et al. „Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy“. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021. http://dx.doi.org/10.23919/date51398.2021.9473958.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Nuclear magnetic resonace spectroscopy"

1

Axelson, D. E. Carbon-13 solid state nuclear magnetic resonance spectroscopy of pitch. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304931.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Colvin, M., und V. V. Krishnan. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy. Office of Scientific and Technical Information (OSTI), Februar 2003. http://dx.doi.org/10.2172/15007477.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

TonThat, Dinh M. DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/760336.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pease, J. Structures of peptide families by nuclear magnetic resonance spectroscopy and distance geometry. Office of Scientific and Technical Information (OSTI), Dezember 1989. http://dx.doi.org/10.2172/7003404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Barrufet, M. A., F. W. Flumerfelt, M. P. Walsh und A. T. Watson. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10141643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bradbury, E. M., P. Catasti, X. Chen, G. Gupta, B. Imai, R. Moyzis, R. Ratliff und S. Velupillai. Neutron scattering and nuclear magnetic resonance spectroscopy structural studies of protein-DNA complexes. Office of Scientific and Technical Information (OSTI), März 1996. http://dx.doi.org/10.2172/206538.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cho, Herman M. Preliminary Feasibility Study of Using Solid-State Nuclear Magnetic Resonance Spectroscopy to Characterize Hanford Tank Waste Solids. Office of Scientific and Technical Information (OSTI), Oktober 2001. http://dx.doi.org/10.2172/789275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cho, Herman M., und Gregg J. Lumetta. Preliminary Feasibility Study of Using Solid-State Nuclear Magnetic Resonance Spectroscopy to Characterize Hanford Tank Waste Solids. Office of Scientific and Technical Information (OSTI), Oktober 2001. http://dx.doi.org/10.2172/15001299.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Young, Scott G., und Joseph H. Magill. A Study of the T(1) Transition of Poly(bis(trifluoroethoxy)phosphazene) (PBFP) Using Solid-State Nuclear Magnetic Resonance Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, Mai 1989. http://dx.doi.org/10.21236/ada207719.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Henderson, Terry J. Nuclear Magnetic Resonance Identification of Military Nerve Agents and Related Compounds by Two-Dimensional 31P-1H Heteronuclear Overhauser Effect Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, Juni 2010. http://dx.doi.org/10.21236/ada524492.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie