Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nuclear fuel pellet“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nuclear fuel pellet" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nuclear fuel pellet"
Dooley, Patricia, Dakota Contryman, Addie Hervey, Robert Ivers, Isabella Reddish und Yuze Song. „Design of an optimized nuclear fuel pellet“. Nuclear Science and Technology Open Research 2 (09.01.2024): 1. http://dx.doi.org/10.12688/nuclscitechnolopenres.17443.1.
Der volle Inhalt der QuelleHeikinheimo, Janne, Teemu Kärkelä, Václav Tyrpekl, Matĕj̆ Niz̆n̆anský, Mélany Gouëllo und Unto Tapper. „Iodine release from high-burnup fuel structures: Separate-effect tests and simulated fuel pellets for better understanding of iodine behaviour in nuclear fuels“. MRS Advances 6, Nr. 47-48 (Dezember 2021): 1026–31. http://dx.doi.org/10.1557/s43580-021-00175-1.
Der volle Inhalt der QuelleMirsalimov, Vagif. „Crack nucleation in rod-type nuclear fuel pellet“. Mathematics and Mechanics of Solids 24, Nr. 3 (01.02.2018): 668–85. http://dx.doi.org/10.1177/1081286517753977.
Der volle Inhalt der QuelleBeloborodov, Alexey V., Evgeny V. Vlasov, Leonid V. Finogenov und Peter S. Zav’yalov. „High Productive Optoelectronic Pellets Surface Inspection for Nuclear Reactors“. Key Engineering Materials 437 (Mai 2010): 165–69. http://dx.doi.org/10.4028/www.scientific.net/kem.437.165.
Der volle Inhalt der QuelleJoseph, Odii Christopher, Agyekum Ephraim Bonah und Bright Kwame Afornu. „Effect of Dual Surface Cooling on the Temperature Distribution of a Nuclear Fuel Pellet“. Key Engineering Materials 769 (April 2018): 296–310. http://dx.doi.org/10.4028/www.scientific.net/kem.769.296.
Der volle Inhalt der QuelleHalabuk, Dávid, und Jiří Martinec. „CALCULATION OF STRESS AND DEFORMATION IN FUEL ROD CLADDING DURING PELLET-CLADDING INTERACTION“. Acta Polytechnica 55, Nr. 6 (31.12.2015): 384. http://dx.doi.org/10.14311/ap.2015.55.0384.
Der volle Inhalt der QuelleNguyen, Van Tung, Trong Hung Nguyen, Thanh Thuy Nguyen und Duy Minh Cao. „Predicting behavior of AP-1000 nuclear reactor fuel rod under steady state operating condition by using FRAPCON-4.0 software“. Nuclear Science and Technology 8, Nr. 2 (01.09.2021): 43–50. http://dx.doi.org/10.53747/jnst.v8i2.90.
Der volle Inhalt der QuelleKim, Seyeon, und Sanghoon Lee. „Simplified Model of a High Burnup Spent Nuclear Fuel Rod under Lateral Impact Considering a Stress-Based Failure Criterion“. Metals 11, Nr. 10 (14.10.2021): 1631. http://dx.doi.org/10.3390/met11101631.
Der volle Inhalt der QuelleMarchetti, Mara, Michel Herm, Tobias König, Simone Manenti und Volker Metz. „Actinides induced irradiation damage and swelling effect in irradiated Zircaloy-4 after 30 years of storage“. Safety of Nuclear Waste Disposal 1 (10.11.2021): 7–8. http://dx.doi.org/10.5194/sand-1-7-2021.
Der volle Inhalt der QuelleKeyvan, Shahla, Xiaolong Song und Mark Kelly. „Nuclear fuel pellet inspection using artificial neural networks“. Journal of Nuclear Materials 264, Nr. 1-2 (Januar 1999): 141–54. http://dx.doi.org/10.1016/s0022-3115(98)00464-4.
Der volle Inhalt der QuelleDissertationen zum Thema "Nuclear fuel pellet"
Kingdon, David Ross. „Safety characteristics of a suspended-pellet fission reactor system“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0001/NQ42856.pdf.
Der volle Inhalt der QuelleJernkvist, Lars Olof. „Modelling of pellet-cladding interaction induced failure of light water reactor nuclear fuel rods“. Licentiate thesis, Luleå tekniska universitet, 1998. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26115.
Der volle Inhalt der QuelleKonarski, Piotr. „Thermo-chemical-mechanical modeling of nuclear fuel behavior : Impact of oxygen transport in the fuel on Pellet Cladding Interaction“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI080.
Der volle Inhalt der QuelleThe goal of this thesis is to study the impact of oxygen transport on thermochemistry of nuclear fuel and pellet cladding interaction. During power ramps, nuclear fuel is exposed to high temperature gradients. It undergoes chemical and structural changes. The fuel swelling leads to a mechanical contact with the cladding causing high mechanical stresses in the cladding. Simultaneously, chemically reactive gas species are released from the hot pellet center and can interact with the cladding. The combination of these chemical and mechanical factors may lead to the cladding failure by iodine stress corrosion cracking. It has been proven that oxygen transport under high temperature gradients affects irradiated fuel thermochemistry, a phenomenon which may be of importance for stress corrosion cracking. This thesis presents 3D simulations of power ramps in pressurized water reactors with the fuel performance code ALCYONE, which is part of the computing environment PLEIADES. The code has been upgraded to couple the description of irradiated fuel thermochemistry already available with oxygen transport taking into account oxygen thermal diffusion. The impact of oxygen redistribution during a power transient on irradiated fuel thermochemistry in the fuel and on chemically reactive gas release from the fuel (consisting of I(g), I2(g), CsI(g), TeI2(g), Cs(g) and Cs2(g), mainly) is studied. The simulations show that oxygen redistribution, even if moderate in magnitude, leads to the reduction of metallic oxides (molybdenum dioxide, cesium molybdate, chromium oxide) at the fuel pellet center and consequently to the release of a much greater quantity of gaseous cesium, in agreement with post-irradiation examinations. The three-dimensional calculations of the quantities of importance for iodine stress corrosion cracking (hoop stress, hoop strain, iodine partial pressure at the clad inner wall) are then used in simulations of clad crack propagation
Lemarignier, Paul. „Etude et mise au point d’un procédé de fabrication additive pour l’élaboration de combustibles nucléaires innovants“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0108.
Der volle Inhalt der QuelleIn the wake of the Fukushima-Daiichi nuclear accident in March 2011, R&D to improve the behavior of fuels during accidental cooling situations (known as “ATF” for Accident Tolerant Fuels) was relaunched. One of the ways being explored is the improvement of thermal properties. Due to UO2's low thermal conductivity, a significant radial temperature gradient is established within the fuel. This high core temperature reduces the melting margin and hence the coping time for intervention. The addition of a more conductive phase in the form of inserts with precise, optimized geometries would, according to modelling, significantly increase the fuel's overall thermal conductivity. Given the complex geometry of the inserts, additive manufacturing is the solution envisaged for the production of these CERMET composite pellets. The additive manufacturing technology chosen is robocasting, for its simplicity of implementation in a nuclear context and the possibility of simultaneously printing several materials. To initiate this study on CERMETs, alumina was chosen as the technological simulant material for UO2, and molybdenum as the conductive phase. Numerous process parameters were studied, including paste formulations, printing parameters and heat treatments involved in the manufacture of CERMET pellets. In particular, to make the pastes extrudable by the 3D printer, the formulations were optimized from a rheological point of view, enabling them to respect the correct geometry of the CAD model, and to operate compatibly with the alternating extrusion of the two formulations. Machine parameters such as nozzle diameter and extrusion flow rate were adapted to the parts to be printed, resulting in good quality prints. However, after debinding and sintering, the differential shrinkage of the two components (alumina and molybdenum) due to different loading rates and shrinkage kinetics leads to decohesion. To solve this problem, the formulation of the metallic phase was reviewed. “Hybrid” formulations, blends of varying proportions of alumina and molybdenum, have brought a marked improvement in CERMET cohesion. The thermal properties of these CERMETs were assessed using two laser-flash methods. This work demonstrated the feasibility of printing CERMETs with a complex internal structure, but also highlighted the difficulties involved in optimizing the many parameters of an innovative process, due to the numerous stages from paste formulations to heat treatments
SERAFIM, ANTONIO da C. „Estudo da densificação do combustível urânio - 7% gadolínio (Gd2O3) nanoestruturado“. reponame:Repositório Institucional do IPEN, 2016. http://repositorio.ipen.br:8080/xmlui/handle/123456789/27502.
Der volle Inhalt der QuelleMade available in DSpace on 2017-05-25T13:33:55Z (GMT). No. of bitstreams: 0
O processo de sinterização de pastilhas de UO2-Gd2O3 tem sido investigado devido à sua importância na indústria nuclear e ao comportamento complexo durante a sinterização. A sinterização é bloqueada a partir de 1300°C, quando a densificação é deslocada na direção de maiores temperaturas e a densidade final obtida é diminuída. Esta pesquisa contempla o desenvolvimento de combustíveis nucleares para reatores de potência visando aumentar a sua eficiência no núcleo do reator através da elevação da taxa de queima. Foi estudado o uso do Gd2O3 de tamanho nanométrico, na faixa de 10 a 30nm, o qual foi adicionado ao UO2, visando verificar a possibilidade de evitar-se o característico bloqueio da sinterização devido ao efeito Kirkendall observado em pesquisas anteriores. As amostras foram produzidas por meio da mistura mecânica a seco dos pós de UO2 e de 7% Gd2O3 (macroestruturado e nanométrico). Os pós foram compactados e as pastilhas foram sinterizadas a 1700°C sob atmosfera de H2. Os resultados indicam que o característico bloqueio da sinterização no sistema UO2-Gd2O3 macroestruturado, que ocorre na faixa de temperatura de 1300-1500°C, retardando a densificação, foi observado de forma menos intensa quando o Gd2O3 nanométrico foi utilizado, ocorrendo à temperatura de 900°C, e facilitando a densificação posterior. Os ensaios dilatométricos indicaram uma retração de 22, 18 e 20% respectivamente nas pastilhas de UO2, UO2-7%Gd2O3 macro e UO2-7% Gd2O3nanométrico. Foi verificada uma retração 2% maior quando o Gd2O3 nanométrico foi utilizado quando comparada com a obtida com o uso do Gd2O3 macro, usado comercialmente, resultando em pastilhas com densidade adequada para uso como combustível nuclear.
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
Baurens, Bertrand. „Couplages thermo-chimie mécaniques dans le dioxyde d'uranium : application à l' intéraction pastille-gaine“. Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4047/document.
Der volle Inhalt der QuelleNuclear fuels under power transient undergo high thermal and mechanical stresses, as well as deep chemical modifications. Stresses on the cladding at the inter-pellet plane due to the pellet thermal expansion, associated to the corrosive fission product release, can lead to clad failures, resulting from a stress corrosion cracking mechanism. The thermal, mechanical and chemical properties of the UO2 irradiated fuel are closely dependent and play a major role on the behavior of the material during a power transient. The aim of this work is to model at the pellet scale the chemical, thermal and mechanical coupled changes of the UO2 fuel during a power transient scenario and to evaluate the consequences on the fuel behavior. The final objective is to obtain an evaluation of the iodine release source term to be used in I-SCC modelling codes dedicated to Pellet-Clad-Interaction studies
REIS, REGIS. „Análise do comportamento sob irradiação do combustível nuclear a altas queimas com os programas computacionais FRAPCON e FRAPTRAN“. reponame:Repositório Institucional do IPEN, 2014. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11797.
Der volle Inhalt der QuelleMade available in DSpace on 2014-11-10T11:11:38Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
NUNES, BEATRIZ G. „Determinação exerimental de razões espectrais e do espectro de energia dos nêutrons no combustível do reator nuclear IPEN/MB-01“. reponame:Repositório Institucional do IPEN, 2012. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10069.
Der volle Inhalt der QuelleMade available in DSpace on 2014-10-09T14:09:44Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Lage, Aldo Márcio Fonseca. „Modelagem geométrica computacional das etapas de prensagem e sinterização de pastilhas e de laminação de placas combustíveis em dispersão de microesferas de (Th,25%U) O2 em matriz de aço inoxidável“. CNEN - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 2005. http://www.bdtd.cdtn.br//tde_busca/arquivo.php?codArquivo=46.
Der volle Inhalt der QuelleNeste trabalho foi realizada a modelagem geométrica computacional das Cetapas de prensagem e sinterização da pastilha e da laminação da placa de combustível nuclear contendo microesferas de (Th,25%U)O2 dispersas em matriz de aço inoxidável com o objetivo de avaliar a distribuição destas microesferas nas diversas etapas do processamento. As regras de modelagem foram desenvolvidas baseadas nos parâmetros de cada etapa da fabricação da placa combustível. Para isto foram obtidas placas através do processamento por laminação de molduras de chapas de aço inoxidável, contendo pastilha fabricadas com microesferas de (Th,25%U)O2 com carregamentos de 10, 20 e 40% em peso de combustível disperso em matriz de aço inoxidável. Os dados das placas com carregamentos de 30 e 50% foram obtidos por interpolação da curva. As microesferas, obtidas pelo processo sol-gel, foram previamente secas, reduzidas e sinterizadas a 1700oC, durante 2 horas, sob atmosferas de hidrogênio. As microesferas sinterizadas alcançaram uma densidade de cerca de 98% da densidade teórica, e possuem um diâmetro médio de cerca de 300 mm e uma elevada resistência à fratura, de aproximadamente 40 N/microesfera. As regras implementadas neste modelo foram aplicadas nas coordenadas dos centros das esferas virtuais, que simulam as microesferas combustíveis de (Th,25%U)O2, obtendo-se novas coordenadas espaciais para cada uma delas nas etapas de prensagem e sinterização da pastilha e da laminação da placa combustível. Este modelo foi projetado com o uso de técnicas de análise de sistema estruturada, implementado utilizando a linguagem de programação Delphi e os resultados visualizados através do programa AutoCAD. Os resultados do modelo foram validados comparando-se as frações volumétricas experimentais em cada um dos carregamentos estudados com as frações simuladas. Este trabalho será de grande valia para o estudo do carregamento de microesferas na placa combustível, permitindo obter um combustível de elevado desempenho mecânico, térmico e neutrônico mesmo em mais alto carregamento.
The computational geometric modeling of the pressing, sintering and lamination stages for nuclear fuel plates composed by (Th,25%U)O2, microspheres dispersed into stainless steel matrix has been done in order to investigate the microspheres distribution in the various processing stages. The modeling standards were based on the parameters related to each fuel plate manufacturing stage. Accordingly, the plates were obtained through lamination processing of stainless steel plate frames comprising (Th,25%U)O2 microspheres pellets dispersed into stainless steel powder with loading of 10, 20 and 40% of microspheres dispersed into stainless steel matrix. The data for plates with loading of 30 and 50% have been obtained by linear interpolation. The microspheres produced by the sol-gel method were previously reduced and sintered at 1700 0C during 2 hours at hydrogen atmosphere. These sintered microspheres have reached about 98% of the theoretical density, with a mean diameter of 300 mm and a high resistance to fracture, near to 40 N/microsphere. The implemented standards in this model were applied at the virtual spheres center coordinates, which simulate the (Th,25%U)O2 fuel microspheres, and generate the new spatial coordinates to each of them in the pressing, sintering and lamination stages. This model was developed using structured system analysis techniques and it has been implemented using the Delphi programming language. The results were displayed through the AutoCAD program and validated comparing the experimental volumetric fractions in each of the studied loading, with the simulated fractions. The results indicate that this work could be a powerful tool in the investigation of microspheres loading in the fuel plate, allowing the attainment of a high mechanical and neutronic performance fuel, even for higher level loading.
REZENDE, RENATO P. „Soldagem de juntas tubulares de aço inoxidável austenítico AISI 348 para varetas combustíveis em reatores nucleares“. reponame:Repositório Institucional do IPEN, 2015. http://repositorio.ipen.br:8080/xmlui/handle/123456789/23883.
Der volle Inhalt der QuelleMade available in DSpace on 2015-08-07T14:08:44Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Bücher zum Thema "Nuclear fuel pellet"
Commissariat à l'énergie atomique, Cadarache., Direction de l'énergie nucléaire, DEC, Electricité de France und OECD Nuclear Energy Agency, Hrsg. Pellet-clad interaction in water reactor fuels: Seminar proceedings, Aix-en-Provence, France, 9-11 March 2004. Paris: Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 2005.
Den vollen Inhalt der Quelle findenPellet Clad Interaction in Water Reactor Fuels (Nuclear Science). OECD, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Nuclear fuel pellet"
Zhou, Yunfei, Cheng Wang, Bin Cheng und Hongguang Yang. „Numerical Simulation of Fuel Pellet Cladding Interaction in Nuclear Reactor“. In Advances in Energy Resources and Environmental Engineering, 181–88. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-42563-9_18.
Der volle Inhalt der QuelleHendricks, John S., Martyn T. Swinhoe und Andrea Favalli. „Examples for Nuclear Safeguards Applications“. In Monte Carlo N-Particle Simulations for Nuclear Detection and Safeguards, 155–94. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04129-7_3.
Der volle Inhalt der QuelleYang, Xiaoliang, Xuequan Wang, Zhe Pan, Jie Liu und Jiandong Luo. „Preliminary Application of CT Technology in Non-destructive Testing of Nuclear Fuel Elements“. In Springer Proceedings in Physics, 98–106. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_10.
Der volle Inhalt der QuelleKim, Ki Hwan, Jong Man Park, Don Bae Lee, Chul Goo Chi und Chang Kyu Kim. „Fabrication of Monolithic UAl2 Pellet for High-Density Nuclear Fuel“. In Advanced Materials Research, 925–28. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-463-4.925.
Der volle Inhalt der QuellePanakkal, J. P., J. K. Ghosh und P. R. Roy. „Nondestructive Characterization of Mixed Oxide Pellets in Welded Nuclear Fuel Pins by Neutron Radiography and Gamma-autoradiography“. In Nondestructive Characterization of Materials, 832–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-84003-6_96.
Der volle Inhalt der QuelleOnder, E. Nihan. „Fuel Pellet, Element and Assembly“. In Fundamentals of Nuclear Fuel, 85–98. ASME, 2023. http://dx.doi.org/10.1115/1.887158_ch6.
Der volle Inhalt der QuelleKato, Masato. „Fuel Design and Fabrication: Pellet-Type Fuel“. In Encyclopedia of Nuclear Energy, 298–307. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-819725-7.00107-0.
Der volle Inhalt der QuellePiro, Markus H. A., Dion Sunderland, Steve Livingstone, Jerome Sercombe, R. Winston Revie, Aaron Quastel, Kurt A. Terrani und Colin Judge. „Pellet-Clad Interaction Behavior in Zirconium Alloy Fuel Cladding“. In Comprehensive Nuclear Materials, 248–306. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-803581-8.09799-x.
Der volle Inhalt der QuelleOnder, E. Nihan. „Advanced Fuel Concept“. In Fundamentals of Nuclear Fuel, 203–56. ASME, 2023. http://dx.doi.org/10.1115/1.887158_ch10.
Der volle Inhalt der QuelleOnder, E. Nihan. „Nuclear Power Reactors and Their Fuels“. In Fundamentals of Nuclear Fuel, 3–6. ASME, 2023. http://dx.doi.org/10.1115/1.887158_ch2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nuclear fuel pellet"
Ambrosek, Richard G., Robert C. Pedersen und Amanda Maple. „Modeling of MOX Fuel Pellet-Clad Interaction Using ABAQUS“. In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22142.
Der volle Inhalt der QuelleKlouzal, Jan, und Martin Dostál. „Modelling of the Impact of Local Effects on Fuel-Cladding Interaction During Power Ramp“. In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30807.
Der volle Inhalt der QuelleJiang, Hao, Jy-An John Wang und Hong Wang. „Potential Impact of Interfacial Bonding Efficiency on Used Nuclear Fuel Vibration Integrity During Normal Transportation“. In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-29067.
Der volle Inhalt der QuelleGitzhofer, F., K. Mailhot, M. I. Boulos, I. H. Jung, J. S. Lee und H. S. Park. „Fabrication of Simulated Nuclear Fuel Pellets by Induction Plasma Deposition“. In ITSC 1998, herausgegeben von Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1283.
Der volle Inhalt der QuelleKubáň, Jan, und Radek Škoda. „Utilization of Thorium in LWR Fuels Aiming at Thermal Conductivity Improvements“. In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60300.
Der volle Inhalt der QuelleTang, Changbing, Yongjun Jiao, Wenjie Li, Tao Qing, Yifei Miao und Ping Chen. „Numerical Simulation of Different Sizes Missing Pellet Surface Effects on Thermal-Mechanical Behaviors in Nuclear Fuel Rods“. In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60116.
Der volle Inhalt der QuelleLi, Songyang, Dingqu Wang, Wenli Guo und Yueyuan Jiang. „Analysis and Prospect of the Duplex Fuel Pellets of LOWI Type for Water-Cooled Reactors“. In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60505.
Der volle Inhalt der QuelleGamble, Kyle A. L., Anthony F. Williams und Paul K. Chan. „A Three-Dimensional Analysis of the Local Stresses and Strains at the Pellet Ridges in a Horizontal Nuclear Fuel Element“. In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30023.
Der volle Inhalt der QuelleLi, Jiwei, Yang Ding, Wentao Liu, Guangwen Bi, Ruirui Zhao und Qin Zhou. „Out-of-Pile Properties Investigation of UO2-BeO Fuel Pellet“. In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66585.
Der volle Inhalt der QuelleZhu, Wang, Zhang Chunyu, Li Aolin und Yuan Cenxi. „Three Dimensional Modeling of the Thermo-Mechanical Performance of the Fuel Rods of a PWR“. In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66010.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Nuclear fuel pellet"
S. Keyvan. Intelligent Automated Nuclear Fuel Pellet Inspection System. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/754854.
Der volle Inhalt der QuelleWang, Jy-An, Bruce Bevard, John Scaglione und Rose Montgomery. Fracture toughness evaluations for spent nuclear fuel dry storage canister welds and spent nuclear fuel clad-pellet structures. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1782033.
Der volle Inhalt der QuelleKips, R. Argentina-LLNL-LANL Comparative Sample Analysis on UO2 fuel pellet CRM-125A for Nuclear Forensics. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1413178.
Der volle Inhalt der QuelleBattaglia, Francine. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/942124.
Der volle Inhalt der QuelleAsgari, Mehdi, Jake Hirschhorn, Eva Davidson, Dave Kropaczek, Andrew Godfrey und Ryan Sweet. Final Summary Report on the Feasibility and the Benefits of the Advanced Nuclear Fuel Pellet Designs with Radially Varying Fuel Zoning and Burnable Poison Concentration. Office of Scientific and Technical Information (OSTI), Juli 2022. http://dx.doi.org/10.2172/1958390.
Der volle Inhalt der QuelleD.E. Clark und D.C. Folz. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/992637.
Der volle Inhalt der Quelle