Auswahl der wissenschaftlichen Literatur zum Thema „Nuclear astrophysics“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nuclear astrophysics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Nuclear astrophysics"

1

Depalo, Rosanna. „Nuclear Astrophysics Deep Underground“. International Journal of Modern Physics: Conference Series 46 (Januar 2018): 1860003. http://dx.doi.org/10.1142/s2010194518600030.

Der volle Inhalt der Quelle
Annotation:
Cross sections of nuclear reactions relevant for astrophysics are crucial ingredients to understand the energy generation inside stars and the synthesis of the elements. At astrophysical energies, nuclear cross sections are often too small to be measured in laboratories on the Earth surface, where the signal would be overwhelmed by the cosmic-ray induced background. LUNA is a unique Nuclear Astrophysics experiment located at Gran Sasso National Laboratories. The extremely low background achieved at LUNA allows to measure nuclear cross sections directly at the energies of astrophysical interest. Over the years, many crucial reactions involved in stellar hydrogen burning as well as Big Bang nucleosynthesis have been measured at LUNA. The present contribution provides an overview on underground Nuclear Astrophysics as well as the latest results and future perspectives of the LUNA experiment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Adsley, Philip. „Transfer Reactions in Nuclear Astrophysics“. EPJ Web of Conferences 275 (2023): 01001. http://dx.doi.org/10.1051/epjconf/202327501001.

Der volle Inhalt der Quelle
Annotation:
Transfer reactions are important tool in nuclear astrophysics. These reactions allow us to identify states in nuclei and to find the corresponding energies, to determine if these states can contribute to astrophysical nuclear reactions and ultimately to determine the strength of that contribution. In this paper,the basic details of how transfer reactions may be used in nuclear astrophysics are set out along with some common pitfalls to avoid.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gyürky, György. „Challenges and Requirements in High-Precision Nuclear Astrophysics Experiments“. Universe 8, Nr. 4 (28.03.2022): 216. http://dx.doi.org/10.3390/universe8040216.

Der volle Inhalt der Quelle
Annotation:
In the 21th century astronomical observations, as well as astrophysical models, have become impressively precise. For a better understanding of the processes in stellar interiors, the nuclear physics of astrophysical relevance—known as nuclear astrophysics—must aim for similar precision, as such precision is not reached yet in many cases. This concerns both nuclear theory and experiment. In this paper, nuclear astrophysics experiments are put in focus. Through the example of various parameters playing a role in nuclear reaction studies, the difficulties of reaching high precision and the possible solutions are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lépine-Szily, Alinka, und Pierre Descouvemont. „Nuclear astrophysics: nucleosynthesis in the Universe“. International Journal of Astrobiology 11, Nr. 4 (09.05.2012): 243–50. http://dx.doi.org/10.1017/s1473550412000158.

Der volle Inhalt der Quelle
Annotation:
AbstractNuclear astrophysics is a relatively young science; it is about half a century old. It is a multidisciplinary subject, since it combines nuclear physics with astrophysics and observations in astronomy. It also addresses fundamental issues in astrobiology through the formation of elements, in particular those required for a carbon-based life. In this paper, a rapid overview of nucleosynthesis is given, mainly from the point of view of nuclear physics. A short historical introduction is followed by the definition of the relevant nuclear parameters, such as nuclear reaction cross sections, astrophysical S-factors, the energy range defined by the Gamow peak and reaction rates. The different astrophysical scenarios that are the sites of nucleosynthesis, and different processes, cycles and chains that are responsible for the building of complex nuclei from the elementary hydrogen nuclei are then briefly described.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Arnould, M., und K. Takahashi. „Nuclear astrophysics“. Reports on Progress in Physics 62, Nr. 3 (01.01.1999): 395–462. http://dx.doi.org/10.1088/0034-4885/62/3/003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Penionzhkevich, Yu E. „Nuclear astrophysics“. Physics of Atomic Nuclei 73, Nr. 8 (August 2010): 1460–68. http://dx.doi.org/10.1134/s106377881008020x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Langanke, K. „Nuclear astrophysics“. Nuclear Physics A 654, Nr. 1-2 (Juli 1999): C330—C349. http://dx.doi.org/10.1016/s0375-9474(99)00262-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rauscher, Thomas, und Friedrich-Karl Thielemann. „Nuclear astrophysics“. Europhysics News 32, Nr. 6 (November 2001): 224–26. http://dx.doi.org/10.1051/epn:2001608.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Haxton, W. C. „Nuclear astrophysics“. Nuclear Physics A 553 (März 1993): 397–406. http://dx.doi.org/10.1016/0375-9474(93)90638-e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Descouvemont, P. „Astrophysica for Windows: a PC software for nuclear astrophysics“. Nuclear Physics A 688, Nr. 1-2 (Mai 2001): 557–59. http://dx.doi.org/10.1016/s0375-9474(01)00786-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Nuclear astrophysics"

1

Doherty, Daniel Thomas. „Experimental studies for explosive nuclear astrophysics“. Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/18022.

Der volle Inhalt der Quelle
Annotation:
In the ejecta from ONe novae outbursts nuclei up to A~40 are observed. The 30P(p,γ)31S reaction is thought to be the bottleneck for the production of all elements heavier than sulphur. However, due to uncertainties in the properties of key proton-unbound resonances the reaction rate is not well determined. In this thesis work, excited states in 31S were populated via the 28Si(4He,n) light-ion fusion-evaporation reaction and the prompt electromagnetic radiation was then detected with the GAMMASPHERE detector array. This γ-ray spectroscopy study, and comparisons with the stable mirror nucleus 31P, allowed the determination of the 31S level structure below the proton-emission threshold and also of the key proton-unbound states for the 30P(p,γ)31S reaction. In particular, transitions from key, low-spin states were observed for the first time. This new information was then used for the re-evaluation of the 30P(p,γ)31S reaction in the temperature range relevant for ONe novae. The newly calculated rate is higher than previous estimates implying a greater flux of material processed to high-Z elements in novae. Astrophysical X-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The 15O(α,γ)19Ne reaction is one reaction that allows breakout from these CNO cycle and into the rp-process to fuel outbursts. The reaction is expected to be dominated by a single 3/2+ resonance at 4.033 MeV in 19Ne, however, limited information is available on this key state. This thesis work reports on a pioneering study of the 20Ne(p,d)19Ne reaction in inverse kinematics performed at the Experimental Storage Ring (ESR) as a means of accessing the 4.033-MeV state in 19Ne. The unique background free, high luminosity conditions of the ESR were utilised for this, the first transfer reaction performed at the ESR. The results of this pioneering test experiment are presented along with suggestions for future measurements at storage ring facilities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mumby-Croft, Paul David. „Tactic : A New Detector for Nuclear Astrophysics“. Thesis, University of York, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

TABASSAM, UZMA. „A Pair Spectrometer for Nuclear Astrophysics Applications“. Doctoral thesis, Università degli Studi di Camerino, 2012. http://hdl.handle.net/11581/401785.

Der volle Inhalt der Quelle
Annotation:
A spectrometer using two fully depleted silicon detectors (in a configuration) has been realized with the goal of directly measuring the production rate of the e+e− pairs emitted in E0 transition of the 12C 16O reaction. This is a key reaction in nuclear astrophysics, which takes place during the He burning stage of red giant stars and thus regulates the carbon/oxygen abundance in the Universe. In particular, we are interested to determine the e+e− pair cross section at energies below 2 MeV, where theoretical estimate is possible by using the R- matrix extrapolation. Experimental e+e− pair emission data at this energy thus provides a valuable tool to validate such analytical approximate scheme. Resolution and efficiency measurements have been carried out using 241Am +239 Pu source, the α source, 32P,207 Bi β sources and the 19F(p, α)16O fusion evaporation reaction below 1 MeV on beam reaction at CIRCE tandem accelerator (Caserta, Italy). The results obtained approve to be in good agreement with our GEANT4 simulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Szabo, Anthony Paul. „High energy emissions for astrophysical objects“. Title page, contents and abstract only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phs996.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Luis, Hélio Fernandes. „Study of nuclear reactions relevant for astrophysics by Micro-AMS“. Doctoral thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11274.

Der volle Inhalt der Quelle
Annotation:
Dissertação para obtenção do Grau de Doutor em Física
This work of this thesis was dedicated to the application of the Micro-AMS(Accelerator Mass spectrometry with micro-beam) to the study of nuclear reactions relevant to Astrophysics, namely reactions involving the radioisotope 36Cl. Before this could be done, the system had to be installed, tested and optimized. During the installation and testing phase, several isotopes were measured, principally lead and platinum isotopes, which served to show the potential of this technique for applications to Material science and archeology. After this initial stage, the work with 36Cl began. 36Cl is one of several short to medium lived isotopes (as compared to the earth age) whose abundances in the earlier solar system may help to clarify its formation process. There are two generally accepted possible models for the production of this radionuclide: it originated from the ejecta of a nearby supernova (where 36Cl was most probably produced via the s-process by neutron irradiation of 35Cl) and/or it was produced by in-situ irradiation of nebular dust by energetic particles(mostly, p, a, 3He -X-wind irradiation model). The objective of the present work was to measure the cross section of the 35Cl(n,γ)36Cl nuclear reaction which opened the possibility to the future study of the 37Cl(p,d)36Cl and 35Cl(d,p)36Cl nuclear reactions, by measuring the 36Cl content of AgCl samples with Micro-AMS, taking advantage of the very low detection limits of this technique for chlorine measurements. For that, the micro-AMS system of the CTN-IST laboratory had to be optimized for chlorine measurements, as to our knowledge this type of measurements had never been performed in such a system (AMS with micro-beam). This thesis presents the results of these developments, namely the tests in terms of precision and reproducibility that were done by comparing AgCl blanks irradiated at the Portuguese National Reactor with standards produced by the dilution of the NIST SRM 4943 standard material. With these results the cross section of the 37Cl(n,γ)36Cl was calculated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Álvarez, Pastor José Manuel. „Focal plane detectors of a Laue lens telescope for Nuclear Astrophysics“. Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/83940.

Der volle Inhalt der Quelle
Annotation:
centenares de keV hasta unos pocos MeV), presenta un extraordinario potencial para comprender los procesos más extremos que tienen lugar en el Universo, como las explosiones estelares o los aceleradores de partículas. No obstante, a pesar de los enormes esfuerzos realizados por los observatorios de rayos gamma (en el pasado y en la actualidad), se requiere una mejora en la sensibilidad instrumental para aprovechar el enorme potencial científico contenido en este rango energético. Durante las dos últimas décadas se han buscado formas de mejorar la sensibilidad de los instrumentos, incrementando la eficiencia de los detectores y reduciendo el ruido instrumental (mediante sofisticados mecanismos de blindaje y técnicas de análisis). Con este objetivo, un enorme esfuerzo en innovación instrumental (construcción de prototipos y estudios numéricos) está siendo realizado por una comunidad creciente de científicos que se enfrentan al reto de preparar la próxima generación de telescopios de rayos gamma. En particular, son especialmente notables los avances logrados en los últimos años en el campo de la focalización de rayos gamma mediante lentes de difracción. Conceptualmente, una lente de rayos gamma reduciría drásticamente el ruido instrumental ya que concentra los fotones en un detector de pequeñas dimensiones (el ruido es proporcional al volumen del instrumento). Una lente de difracción, para observaciones en astrofísica nuclear, no es sólo un concepto teórico, sino una realidad, gracias principalmente al proyecto CLAIRE. Asimismo, el desarrollo de la tecnología para la focalización de rayos gamma ha incentivado el desarrollo de las diferentes tecnologías de detección. Un detector apropiado para el plano focal de una lente gamma, debe disponer de capacidad de imagen, proporcionar espectroscopia de alta resolución y medir la polarización de los fotones incidentes. El trabajo presentado en esta tesis comprende tanto la óptica de focalización como el detector del plano focal. Con respecto a la óptica, se presenta el ensayo realizado con el prototipo CLAIRE, mediante el cual se ha confirmado los principios de una lente de difracción. En cuanto al plano focal, esta investigación se ha desarrollado principalmente en el marco de estudio de las misiones espaciales GRI (2007) y DUAL (2010), propuestas a la ESA dentro del programa “Cosmic Vision 2015-2025”. En el marco de la misión GRI, se presenta una configuración para el detector del plano focal basado en detectores pixelados de Cd(Zn)Te, al tiempo que se investiga y desarrolla un primer prototipo de detector pixelado de CdTe. Cabe destacar que el sistema de detección propuesto fue registrado con éxito mediante una patente europea, y está siendo desarrollado para su aplicación en medicina nuclear. En relación a la propuesta DUAL, se presenta un estudio del ruido instrumental obtenido mediante simulaciones numéricas con el fin de precisar la sensibilidad del instrumento (basado en detectores de Germanio) propuesto en esta misión. Más allá de las tecnología consideradas en GRI y DUAL, una amplia variedad de detectores pueden ser explorados, bien para el plano focal de una lente de difracción o bien como sistemas de detección por sí mismos. En este sentido, se ha ampliado el espectro de tecnologías y se ha incluido un estudio sobre detectores basados en xenón líquido. En esta tesis se ha realizado un trabajo de investigación y desarrollo con tecnologías vanguardistas propuestas para la próxima generación de telescopios de rayos gamma. Esta instrumentación debe enfrentarse al reto de alcanzar la sensibilidad requerida para dar respuesta a las cuestiones aun no resultas por la astrofísica de rayos gamma en el rango de energía de las transiciones nucleares.
few MeV) has an extraordinary potential for understanding the evolving and violent Universe. In spite of the strong efforts accomplished by past and current instruments, in order to perform observations in this energy range, an improvement in sensitivity over present technologies is needed to take full advantage of the scientific potential contained in this energy range. In order to achieve higher sensitivities, γ-ray astronomy has been looking over the last decades for new ways to increase the efficiency of its instruments while reducing the background noise. With the objective of reducing or avoiding as much background as possible (through shielding mechanisms and data analysis techniques), a strong effort in innovation and design (build-up of prototypes and numerical simulations studies) is being conducted by a community facing the challenge of preparing the next generation of γ-ray telescopes. In particular, the progress achieved during the last decade on focusing optics based on Laue lenses is especially remarkable. Conceptually, a focusing telescope will reduce drastically the background noise by concentrating γ-rays onto a small size detector. Focusing γ-rays with a Laue lens is not just a theoretical concept, but a reality, mainly thanks to the development of a first prototype of Laue lens for nuclear astrophysics accomplished as part of the CLAIRE project. Moreover, the development of focusing optics during these years has also encouraged the development of new detector technologies. The focal plane detector of a focusing telescope should provide imaging capabilities, perform high-resolution spectroscopy and measure the polarization of the incident photons in order to achieve the ambitious scientific goals. The research presented in this thesis covers both main areas of a γ-rays telescope: focusing optics and focal plane detector. As far as the optics is concerned, a test of the lens CLAIRE was performed in order to confirm the principles of a Laue diffraction lens. Concerning the focal plane detector, theoretical and experimental studies with new detector technologies have been carried out. Our main research has evolved in the framework of two mission concept studies -GRI (2007) and DUAL (2010)- submitted to the ESA Calls for a Medium-size mission opportunity within the Cosmic Vision 2015-2025 program. As far as the GRI mission is concerned, a focal plane detector configuration based on Cd(Zn)Te pixelated detectors is proposed, whilst development and testing of a detector prototype is accomplished. It is noteworthy that the detector configuration was successfully registered under a European Patent and is being considered for applications in the field of nuclear medicine. Regarding the DUAL mission, simulations of the expected space radiation environment and the resulting detector activation were carried out in order to estimate the performances of the all-sky Compton telescope of DUAL (based on Germanium-strip detectors). The results show that DUAL could achieve, after two years of operation, a continuum sensitivity one order of magnitude better than any past and current observatory in the MeV energy range and up to a factor 30 of improvement with its Laue lens. Beyond the detector technology proposed for GRI and DUAL, a wide variety of technologies could be explored for the focal plane of a γ-ray lens mission as well as for a stand-alone detector. In this thesis a focal plane detector based on liquid xenon is also considered. This work faces the challenges of the next generation of γ-ray telescopes, where high performance γ-ray detectors are necessary to achieve the required sensitivity in order to answer several hot scientific topics of Gamma-ray astrophysics in the energy range of nuclear transitions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lonardoni, Diego. „From Hypernuclei to Hypermatter: a Quantum Monte Carlo Study of Strangeness in Nuclear Structure and Nuclear Astrophysics“. Doctoral thesis, Università degli studi di Trento, 2013. https://hdl.handle.net/11572/368865.

Der volle Inhalt der Quelle
Annotation:
The work presents the recent developments in Quantum Monte Carlo calculations for nuclear systems including strange degrees of freedom. The Auxiliary Field Diffusion Monte Carlo algorithm has been extended to the strange sector by the inclusion of the lightest among the hyperons, the Λ particle. This allows to perform detailed calculations for Λ hypernuclei, providing a microscopic framework for the study of the hyperon-nucleon interaction in connection with the available experimental information. The extension of the method for strange neutron matter, put the basis for the first Diffusion Monte Carlo analysis of the hypernuclear medium, with the derivation of neutron star observables of great astrophysical interest.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lonardoni, Diego. „From Hypernuclei to Hypermatter: a Quantum Monte Carlo Study of Strangeness in Nuclear Structure and Nuclear Astrophysics“. Doctoral thesis, University of Trento, 2013. http://eprints-phd.biblio.unitn.it/1068/1/PhD_Thesis_Lonardoni.pdf.

Der volle Inhalt der Quelle
Annotation:
The work presents the recent developments in Quantum Monte Carlo calculations for nuclear systems including strange degrees of freedom. The Auxiliary Field Diffusion Monte Carlo algorithm has been extended to the strange sector by the inclusion of the lightest among the hyperons, the Λ particle. This allows to perform detailed calculations for Λ hypernuclei, providing a microscopic framework for the study of the hyperon-nucleon interaction in connection with the available experimental information. The extension of the method for strange neutron matter, put the basis for the first Diffusion Monte Carlo analysis of the hypernuclear medium, with the derivation of neutron star observables of great astrophysical interest.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Harss, Boris Peter Mathias Sascha. „Development of a radioactive 17F beam and its use in nuclear astrophysics experiments“. [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962379883.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Altana, Carmen Loredana. „The role of nanostructured targets in Laser-Produced Plasmas for Nuclear Astrophysics studies“. Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3737.

Der volle Inhalt der Quelle
Annotation:
This PhD thesis documents the experimental study of plasmas produced from the interaction of a high-power laser in ns domain with nanostructured materials compared with ordinary bulk target. The study is focused on the effect of solid targets with different physical and geometric characteristics, and has the purpose to asses the effects of nanoscale structures in laser-matter interaction and in plasma formation. The motivation for these experiments arises from the fact that there is the possibility of producing plasmas with density and temperature characteristics suitable for nuclear fusion studies, relevant in astrophysics. The optimization of the specific characteristics of nanomaterials, containing metal nanowires, could lead to a stagnant, hotter and denser plasma and to implement the above mentioned studies successfully. The nanostructured targets used in this study are metamaterials consisting in aligned metal nanowires grown by electrodeposition into a porous alumina matrix, obtained on a thick aluminium substrate. These materials were developed with different length, diameter, metal and deposition technique in order to maximize absorption in the visible and IR wavelengths. Various diagnostics were employed for the characterization of the Laser Produced Plasma (LPP). In particular, an Intensified CCD camera in visible domain has been a useful diagnostic tools to understand the expansion dynamics of laser created plumes, by providing a two-dimensional snap shots of the three-dimensional LPP propagation. Depending upon the target material, the generated plume s ion emission features (velocity, flux) as well as plasma properties (temperature, density) are varied even at constant laser intensity. The use of a CCD-camera in X-rays domain has allowed to investigate the X-ray emissivity of laser-produced plasmas. By coupling the detector with an array of pinhole, spectral selection of X-ray emission has been implemented. The Time of Flight measurements have provided a technique to determine the velocity distribution of the plasma at large distances from the target surface, complementarily to velocity estimated by visible imaging close to target surface. Moreover, morphological analysis of craters formed for the laser irradiation was performed by using an optical microscope. The cross-analysis of various diagnostics has immediately showed the differences between an ordinary Al-bulk target and nanostructured materials: bulk aluminium plasma has shorter duration, X-ray flux and ablation efficiency than all other. Finally, preliminary investigations of ion energy spectra, obtained with a Thomson Parabola Spectrometer, were carried out to better understand the nuclear fusion process in a plasma. Temperature estimated are in good agreement with the occurrence of nuclear fusions. All these experimental evidences have taken a further step towards the application of laser driven nuclear reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Nuclear astrophysics"

1

Hillebrandt, Wolfgang, Rudolf Kuhfuß, Ewald Müller und James W. Truran, Hrsg. Nuclear Astrophysics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0016562.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Perkins, Donald H. Particle astrophysics. 2. Aufl. Oxford: Oxford University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

E, Vangioni-Flam, und Institut d'astrophysique (Paris France), Hrsg. Advances in nuclear astrophysics. Gif-sur-Yvette, France: Editions Frontières, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Klapdor-Kleingrothaus, H. V. Particle astrophysics. Bristol, UK: Institute of Physics Publ., 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

von Ballmoos, Peter, Hrsg. Focusing Telescopes in Nuclear Astrophysics. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/978-1-4020-5304-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bergstrom, L. (Lars). Cosmology and particle astrophysics. 2. Aufl. United States: PRAXIS PUBLISHING (UK), 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

I, Boztosun, und Balantekin A. B, Hrsg. Nuclear physics and astrophysics: Nuclear Physics and Astrophysics : From Stable Beams to Exotic Nuclei, Cappadocia, Turkey, 25-30 June 2008. Melville, N.Y: American Institute of Physics, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

I, Boztosun, und Balantekin A. B, Hrsg. Nuclear physics and astrophysics: Nuclear Physics and Astrophysics : From Stable Beams to Exotic Nuclei, Cappadocia, Turkey, 25-30 June 2008. Melville, N.Y: American Institute of Physics, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

T, Parker Lonnie, Hrsg. Nuclear astrophysics: Current abstracts with indexes. New York: Nova Science Publishers, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

S, Rodney William, Hrsg. Cauldrons in the cosmos: Nuclear astrophysics. Chicago: University of Chicago Press, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Nuclear astrophysics"

1

Paetz gen. Schieck, Hans. „Nuclear Astrophysics“. In Nuclear Reactions, 231–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53986-2_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wiescher, Michael, Richard James deBoer und René Reifarth. „Experimental Nuclear Astrophysics“. In Handbook of Nuclear Physics, 3491–535. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6345-2_116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wiescher, Michael, Richard James deBoer und René Reifarth. „Experimental Nuclear Astrophysics“. In Handbook of Nuclear Physics, 1–45. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-15-8818-1_116-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rebel, H. „Coulomb dissociation as a source of information on radiative capture processes of astrophysical interest“. In Nuclear Astrophysics, 38–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0016566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tornambè, A., F. Matteucci, I. Iben und K. Nomoto. „Binary systems as supernova progenitors (some frequency estimates)“. In Nuclear Astrophysics, 283–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0016589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Langanke, K. „Nuclear Astrophysics: Selected Topics“. In The Hispalensis Lectures on Nuclear Physics Vol. 2, 173–216. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44504-3_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

von Ballmoos, P. „Instruments for Nuclear Astrophysics“. In High-Energy Spectroscopic Astrophysics, 82–197. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27013-2_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wong, S. S. M. „Nuclear Astrophysics with Radioactive Beams“. In Stellar Astrophysics, 51–60. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0878-5_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wiescher, Michael, und Thomas Rauscher. „Nuclear Reactions“. In Astrophysics with Radioactive Isotopes, 523–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91929-4_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kubono, Shigeru. „Nuclear clustering aspects in astrophysics“. In Atomic and Nuclear Clusters, 73–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79696-8_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Nuclear astrophysics"

1

BOMBACI, IGNAZIO. „NUCLEAR ASTROPHYSICS“. In Proceedings of the 9th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705143_0003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Meyer, Mikko, und Kai Zuber. „Nuclear Astrophysics“. In 5th International Solar Neutrino Conference. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811204296_others04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

VIGEZZI, E. „NUCLEAR ASTROPHYSICS“. In Proceedings of the 11th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708793_0015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Haxton, W. C. „Nuclear Astrophysics“. In INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS: 9th Conference CIPAN2006. AIP, 2006. http://dx.doi.org/10.1063/1.2402595.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

DRAGO, ALESSANDRO. „NUCLEAR ASTROPHYSICS“. In Proceedings of the 10th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701985_0009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

BRUNE, C. R. „NUCLEAR ASTROPHYSICS“. In Proceedings of the Nineteenth Lake Louise Winter Institute. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701961_0001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

APRAHAMIAN, A. „NUCLEAR STRUCTURE AND NUCLEAR ASTROPHYSICS“. In Proceedings of the Eleventh International Symposium. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812795151_0035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Aprahamian, Ani. „Nuclear Astrophysics and Nuclear Structure“. In NUCLEAR PHYSICS, LARGE AND SMALL: International Conference on Microscopic Studies of Collective Phenomena. AIP, 2004. http://dx.doi.org/10.1063/1.1805934.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

DE OLIVEIRA SANTOS, F. „NUCLEAR ASTROPHYSICS @ GANIL“. In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814508865_0002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wiescher, Michael. „Nuclear astrophysics underground“. In IX LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS. AIP, 2012. http://dx.doi.org/10.1063/1.3688796.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Nuclear astrophysics"

1

Miller, Jonah. Nuclear Astrophysics and Astrophysical Transients. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1900461.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cooperstein, J. Nuclear astrophysics of supernovae. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/6034283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Penionzhkevich, Yu E. Nuclear reactions in astrophysics. Physico-Technical Society of Kazakhstan, Dezember 2017. http://dx.doi.org/10.29317/ejpfm.2017010202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schramm, D. N., und A. V. Olinto. Nuclear physics and astrophysics. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/7073919.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Arcones, Almudena, Jutta E. Escher und M. Others. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1248270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jones, Katherine Louise. Direct Reactions for Nuclear Structure and Nuclear Astrophysics. Office of Scientific and Technical Information (OSTI), Dezember 2014. http://dx.doi.org/10.2172/1166766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Palumbo, A. EMPIRE: A code for nuclear astrophysics. Office of Scientific and Technical Information (OSTI), Dezember 2013. http://dx.doi.org/10.2172/1121215.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wu, J. Theoretical nuclear physics and astrophysics. Final report. Office of Scientific and Technical Information (OSTI), März 1998. http://dx.doi.org/10.2172/631234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lattimer, J. M., und A. Yahil. Research in nuclear astrophysics: Stellar collapse and supernovae. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5262065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lattimer, J. M., und A. Yahil. Research in nuclear astrophysics: Stellar collapse and supernovae. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6209743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie