Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nsga-Iii“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nsga-Iii" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nsga-Iii"
Ariza Vesga, Luis Felipe, Johan Sebastián Eslava Garzón und Rafael Puerta Ramirez. „EF1-NSGA-III: An evolutionary algorithm based on the first front to obtain non-negative and non-repeated extreme points“. Ingeniería e Investigación 40, Nr. 3 (21.10.2020): 55–69. http://dx.doi.org/10.15446/inginvestig.v40n3.82906.
Der volle Inhalt der QuelleAwad, Mahmoud, Mohamed Abouhawwash und H. N. Agiza. „On NSGA-II and NSGA-III in Portfolio Management“. Intelligent Automation & Soft Computing 32, Nr. 3 (2022): 1893–904. http://dx.doi.org/10.32604/iasc.2022.023510.
Der volle Inhalt der QuelleSun, Xingping, Ye Wang, Hongwei Kang, Yong Shen, Qingyi Chen und Da Wang. „Modified Multi-Crossover Operator NSGA-III for Solving Low Carbon Flexible Job Shop Scheduling Problem“. Processes 9, Nr. 1 (29.12.2020): 62. http://dx.doi.org/10.3390/pr9010062.
Der volle Inhalt der QuelleZou, Ying, Zuguo Chen, Shangyang Zhu und Yingcong Li. „NSGA-III-Based Production Scheduling Optimization Algorithm for Pressure Sensor Calibration Workshop“. Electronics 13, Nr. 14 (19.07.2024): 2844. http://dx.doi.org/10.3390/electronics13142844.
Der volle Inhalt der QuelleGeng, Huantong, Zhengli Zhou, Junye Shen und Feifei Song. „A Dual-Population-Based NSGA-III for Constrained Many-Objective Optimization“. Entropy 25, Nr. 1 (21.12.2022): 13. http://dx.doi.org/10.3390/e25010013.
Der volle Inhalt der QuelleMuteba Mwamba, John Weirstrass, Leon Mishindo Mbucici und Jules Clement Mba. „Multi-Objective Portfolio Optimization: An Application of the Non-Dominated Sorting Genetic Algorithm III“. International Journal of Financial Studies 13, Nr. 1 (28.01.2025): 15. https://doi.org/10.3390/ijfs13010015.
Der volle Inhalt der QuelleQu, Zhanghao, Peng Zhang, Yaohua Hu, Huanbo Yang, Taifeng Guo, Kaili Zhang und Junchang Zhang. „Optimal Design of Agricultural Mobile Robot Suspension System Based on NSGA-III and TOPSIS“. Agriculture 13, Nr. 1 (14.01.2023): 207. http://dx.doi.org/10.3390/agriculture13010207.
Der volle Inhalt der QuelleYi-Hui Chen, Yi-Hui Chen, Heng-Zhou Ye Yi-Hui Chen und Feng-Yi Huang Heng-Zhou Ye. „The Configuration Design of Electronic Products Based on improved NSGA-III with Information Feedback Models“. 電腦學刊 33, Nr. 4 (August 2022): 081–94. http://dx.doi.org/10.53106/199115992022083304007.
Der volle Inhalt der QuelleThawkar, Shankar, Law Kumar Singh und Munish Khanna. „Multi-objective techniques for feature selection and classification in digital mammography“. Intelligent Decision Technologies 15, Nr. 1 (24.03.2021): 115–25. http://dx.doi.org/10.3233/idt-200049.
Der volle Inhalt der QuelleTrưởng, Nguyễn Huy, und Dinh-Nam Dao. „New hybrid between NSGA-III with multi-objective particle swarm optimization to multi-objective robust optimization design for Powertrain mount system of electric vehicles“. Advances in Mechanical Engineering 12, Nr. 2 (Februar 2020): 168781402090425. http://dx.doi.org/10.1177/1687814020904253.
Der volle Inhalt der QuelleDissertationen zum Thema "Nsga-Iii"
Al, Samrout Marwa. „Approches mono et bi-objective pour l'optimisation intégrée des postes d'amarrage et des grues de quai dans les opérations de transbordement“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH21.
Der volle Inhalt der QuelleInternational maritime transport is vital for global trade, representing over 85% of exchanges, with 10.5 billion tons transported each year. This mode of transport is the most economical and sustainable, contributing only 2.6% of CO2 emissions. In France, the maritime sector accounts for 1.5% of GDP and nearly 525,000 jobs. Maritime ports, crucial for the logistics chain, facilitate the transshipment of goods and increasingly adopt digital solutions based on artificial intelligence to improve their efficiency. France has eleven major seaports, seven of which are located in mainland France.The thesis focuses on optimizing container terminals to enhance the efficiency and performance of ports. It addresses the issues of berth allocation planning and crane activation in container terminals in response to recent changes in maritime logistics, such as the arrival of mega-ships and automation. It highlights gaps in the existing literature and offers an in-depth analysis of current challenges. The document is divided into three chapters:The first chapter explores the history of containerization, types of containers, and challenges in operational planning. It focuses on the berth allocation problem (BAP), its resolution methods, and the integration of artificial intelligence (AI) to optimize logistical processes. The second chapter introduces the dynamic allocation problem with ship-to-ship transshipment. It proposes a mixed-integer linear program (MILP) to optimize the berthing schedule and transshipment between vessels. The objective is to reduce vessel stay times in the terminal, as well as penalties due to vessel delays, and to determine the necessary transshipment method. The method combines a packing-type heuristic and an improved genetic algorithm, demonstrating effectiveness in reducing vessel stay times. We conducted a statistical analysis to identify effective control parameters for the GA, then applied this algorithm with the determined control parameters to perform numerical experiments on randomly generated instances. Additionally, we conducted a comparative study to evaluate different crossover operators using ANOVA. We then presented a series of examples based on random data, solved using the CPLEX solver, to confirm the validity of the proposed model. The proposed method is capable of solving the problem in an acceptable computation time for medium and large instances. The final chapter presents an integrated berth and crane allocation problem, focusing on ship-to-ship transshipment. Three approaches are proposed. The first approach uses the NSGA-III genetic algorithm, supplemented by a statistical analysis to optimize parameters and evaluate different crossover operators. By analyzing AIS database data, numerical tests demonstrate the effectiveness of this method at the port of Le Havre, yielding satisfactory results within a reasonable computation time. The second approach involves two regression models, Gradient Boosting Regression (GBR) and Random Forest Regression (RFR), trained on selected features. The methodology includes preprocessing steps and hyperparameter optimization. While NSGA-III achieves the highest accuracy, it requires a longer execution time. In contrast, although GBR and RFR are slightly less precise, they significantly improve efficiency, highlighting the trade-off between accuracy and execution time in practical applications
Buchteile zum Thema "Nsga-Iii"
Khettabi, Imen, Lyes Benyoucef und Mohamed Amine Boutiche. „Multi-objective Sustainable Process Plan Generation for RMS: NSGA-III vs New NSGA-III“. In Modelling, Computation and Optimization in Information Systems and Management Sciences, 170–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92666-3_15.
Der volle Inhalt der QuelleBlank, Julian, Kalyanmoy Deb und Proteek Chandan Roy. „Investigating the Normalization Procedure of NSGA-III“. In Lecture Notes in Computer Science, 229–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12598-1_19.
Der volle Inhalt der QuelleHaider, Christian, und Gabriel Kronberger. „Shape-Constrained Symbolic Regression with NSGA-III“. In Computer Aided Systems Theory – EUROCAST 2022, 164–72. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-25312-6_19.
Der volle Inhalt der QuelleSantoshkumar, Balija, Kalyanmoy Deb und Lei Chen. „Eliminating Non-dominated Sorting from NSGA-III“. In Lecture Notes in Computer Science, 71–85. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27250-9_6.
Der volle Inhalt der QuelleGhosh, Tamal, und Kristian Martinsen. „NSGA III for CNC End Milling Process Optimization“. In Communications in Computer and Information Science, 185–95. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4301-2_16.
Der volle Inhalt der QuelleBekhit, Mahmoud, Ahmed Fathalla, Esraa Eldesouky und Ahmad Salah. „Multi-objective VNF Placement Optimization with NSGA-III“. In Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23), 481–93. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33743-7_39.
Der volle Inhalt der Quelledos Santos, Francisco, Lino A. Costa und Leonilde Varela. „Performance Comparison of NSGA-II and NSGA-III on Bi-objective Job Shop Scheduling Problems“. In Communications in Computer and Information Science, 531–43. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53025-8_36.
Der volle Inhalt der QuelleMakkar, Priyanka, Sunil Sikka und Anshu Malhotra. „Empirical Evaluation of NSGA II, NSGA III, and MOEA/D Optimization Algorithms on Multi-objective Target“. In Advances in Intelligent Systems and Computing, 23–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1740-9_3.
Der volle Inhalt der QuelleGonçalves, Richard A., Lucas M. Pavelski, Carolina P. de Almeida, Josiel N. Kuk, Sandra M. Venske und Myriam R. Delgado. „Adaptive Operator Selection for Many-Objective Optimization with NSGA-III“. In Lecture Notes in Computer Science, 267–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54157-0_19.
Der volle Inhalt der QuelleDing, Rui, Hongbin Dong, Jun He, Xianbin Feng, Xiaodong Yu und Lijie Li. „U-NSGA-III: An Improved Evolutionary Many-Objective Optimization Algorithm“. In Communications in Computer and Information Science, 24–35. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2826-8_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nsga-Iii"
Haddad, Anouar, Takwa Tlili, Issam Nouaouri und Saoussen Krichen. „Solving the multi-objective ambulance routing problem using NSGA III“. In 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), 2296–300. IEEE, 2024. http://dx.doi.org/10.1109/codit62066.2024.10708304.
Der volle Inhalt der QuelleChu, Wang, Liu Zhongze, Cao Shunxiang, Hu Kai, Zhang Yibo, Xiang Dong und Zhou Weiye. „An Improved RRT* Algorithm for Multi-Objective Optimization Based on NSGA-III“. In 2024 8th International Conference on Robotics and Automation Sciences (ICRAS), 55–65. IEEE, 2024. http://dx.doi.org/10.1109/icras62427.2024.10654473.
Der volle Inhalt der QuelleAgarwal, Aakansha, und Satyasai Jagannath Nanda. „Dynamic NSGA-III with KRR-ANOVA Kernel Predictor for In-Motion Sonar Image Segmentation“. In 2024 IEEE Congress on Evolutionary Computation (CEC), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/cec60901.2024.10612074.
Der volle Inhalt der QuellePoor, Masoud Kermani, Shahryar Rahnamayan, Azam Asilian Bidgoli und Mehran Ebrahimi. „Exploring Long-term Memory in Evolutionary Multi-objective Algorithms: A Case Study with NSGA-III“. In 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 864–70. IEEE, 2024. http://dx.doi.org/10.1109/ccece59415.2024.10667327.
Der volle Inhalt der QuelleSampaio, Sávio Menezes, Altino Dantas und Celso G. Camilo-Junior. „IVF/NSGA-III - In Vitro Fertilization Method Coupled to NSGA-III“. In 2023 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2023. http://dx.doi.org/10.1109/cec53210.2023.10254062.
Der volle Inhalt der QuelleWangsom, Peerasak, Pascal Bouvry und Kittichai Lavangnananda. „Extreme Solutions NSGA-III (E-NSGA-III) for Scientific Workflow Scheduling on Cloud“. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2018. http://dx.doi.org/10.1109/icmla.2018.00184.
Der volle Inhalt der QuelleGoncalves, Richard A., Carolina P. Almeida, Lucas M. Pavelski, Sandra M. Venske, Josiel N. Kuk und Aurora T. Pozo. „Adaptive Operator Selection in NSGA-III“. In 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2016. http://dx.doi.org/10.1109/bracis.2016.042.
Der volle Inhalt der QuelleWolschick, Lucas, Paulo Cesar Gonçalves, João Choma Neto, Willian Marques Freire, Aline Maria Malachini Miotto Amaral und Thelma Elita Colanzi. „Evaluating the performance of NSGA-II and NSGA-III on Product Line Architecture Design“. In Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software, 11–20. Sociedade Brasileira de Computação, 2024. http://dx.doi.org/10.5753/sbcars.2024.3830.
Der volle Inhalt der QuelleWietheger, Simon, und Benjamin Doerr. „A Mathematical Runtime Analysis of the Non-dominated Sorting Genetic Algorithm III (NSGA-III)“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/628.
Der volle Inhalt der QuelleSilva, Rheidner, und André Britto. „NSGA-III com Adaptação dos Pontos de Referência“. In Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/eniac.2019.9312.
Der volle Inhalt der Quelle